PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model for forecasting the geometry of the floor panel of a passenger car during its operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model prognozowania stanu geometrii płyty podłogowej samochodu osobowego w toku eksploatacji
Języki publikacji
EN
Abstrakty
EN
A number of vehicle users pay attention to the impact of changes in the car body geometry during long-term use on the safety level. However, this issue has not been properly dealt with in research studies. The aim of this study was to identify changes in the floor panel, to develop a model to forecast the geometry during the car use and to identify the points which undergo the maximum displacement. The paper presents the effect of the car mileage on the floor panel condition, taking into account variable environmental factors. In the course of the study, the position of points fixing the front suspension, front bench and rear suspension was determined, as was the position of points situated on parts of the load bearing structure of the car body. The results were used to develop a model for forecasting changes of the floor panel geometry during car use. The probability of changes in the floor panel geometry was found to increase with the mileage. The probability of reaching the maximum permissible geometric changes (3 mm) in a floor panel is accurately described by the probabilistic model in the form of the Rayleigh distribution. Diverse models of the floor panel geometry changes were obtained depending on the environmental conditions and type of the base points under analysis.
PL
Wielu użytkowników samochodów osobowych zwraca uwagę na istotność wpływu na poziom bezpieczeństwa zmian geometrii nadwozia pojazdów podczas ich wieloletniej eksploatacji. Jednak dotychczas zagadnienie to nie znalazło odpowiedniego odzwierciedlenia w literaturze. Celem pracy była identyfikacja zmian geometrii płyty podłogowej, opracowanie modelu prognozującego stan geometrii w toku eksploatacji i zidentyfikowanie punktów ulegającym największym przemieszczeniom. W pracy przedstawiono wpływ przebiegu pojazdu na stan geometrii płyty podłogowej z uwzględnieniem zróżnicowanych warunków środowiskowych. Podczas badań określano położenie punktów mocujących zawieszenie przednie, przednią ławę i zawieszenie tylne oraz położenie punktów znajdujących się na elementach struktury nośnej nadwozia. Na podstawie uzyskanych wyników opracowano model prognozowania zmian geometrii płyty podłogowej w toku eksploatacji. Stwierdzono, że prawdopodobieństwo zmian geometrii płyty podłogowej podczas eksploatacji rośnie w czasie, wraz ze wzrostem przebiegu. Prawdopodobieństwo osiągnięcia stanu dopuszczalnego (3 mm) zmian geometrycznych na płycie podłogowej dobrze opisuje model probabilistyczny w postaci rozkładu Rayleigha. Uzyskano zróżnicowane modele zmiany geometrii płyty podłogowej w zależności od warunków środowiskowych oraz rodzaju analizowanych punktów bazowych.
Rocznik
Strony
689--695
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Department of Vehicle and Machinery Construction and Operation Faculty of Technical Sciences University of Warmia and Mazury in Olsztyn Oczapowskiego str. 11, 10-716 Olsztyn, Poland
  • Department of Vehicle and Machinery Construction and Operation Faculty of Technical Sciences University of Warmia and Mazury in Olsztyn Oczapowskiego str. 11, 10-716 Olsztyn, Poland
Bibliografia
  • 1. Aguilar J J, Sanz M, Guillomía D, Lope M, Bueno I. Analysis, characterization and accuracy improvement of optical coordinate measurement systems for car body assembly quality control. International Journal Advanced Manufacturing Technology 2006; 30: 1174–1190,https://doi.org/10.1007/s00170-005-0143-5.
  • 2. Ahrens G, Dellmann T, Gies S, Hecht M, Hefazi H, Henke R, Pischinger S, Schaufele R, Tegel O. Applications in Mechanical Engineering. Transport Systems, Würzburg: Springer Science Media, 2009.
  • 3. Anderson R. Numerical and experimental evaluation of spring back in a front side member. Division of Production and Materials Engineering. Lund 2007.
  • 4. Bera T K, Bhattacharya K, Samantaray A K. Evaluation of antilock braking system with an integrated model of full vehicle system dynamics. Simulation Modelling Practice and Theory 2011; 19: 2131–2150, https://doi.org/10.1016/j.simpat.2011.07.002.
  • 5. Boruta G, Piętak A. Mechatronika samochodu. Układy bezpieczeństwa czynnego i biernego. Olsztyn: Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego,2012.
  • 6. Chen H, Gong X, Hu Y F, Liu Q F, Gao B Z, Guo H Y. Automotive Control: the State of the Art and Perspective. Acta Automatica Sinica 2013: 39.
  • 7. Duffy J E. I-Car Professional Automotive Collision Repair. New York: Delmar a division of Thomson Learning 2001.
  • 8. Duffy J. E. Auto Body Repair Technology. Boston: Delmar Cengage Learning 2009.
  • 9. Gonera J, Napiórkowski J. Effect of the mileage of a passenger car on changes in its body geometry. Seoul: Conference 2nd Annual International Symposium on Material Science and Engineering (ISMSE), 2018, https://doi.org/10.1063/1.5030315.
  • 10. Guoye W, Juanli Z, Yanli F, Yanru Z. Study on ESP Control Principle of Light Off-road Vehicle Based on Brake / Drive Integrated Control. Physics Procedia 2012; 25: 834–841, https://doi.org/10.1016/j.phpro.2012.03.165.
  • 11. Habibovic A, Davidsson J. Causation mechanisms in car-to-vulnerable road user crashes: Implications for active safety systems. Accident Analysis and Prevention 2012; 49: 493– 500, https://doi.org/10.1016/j.aap.2012.03.022.
  • 12. Heißing B, Ersoy M. Introduction and Fundamentals, Chassis Handbook: Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives. Wiesbaden GmbH: Vieweg + Teubner Verlag – Springer Fachmedien 2011.
  • 13. Jackowski J, Łęgiewicz J, Wieczorek M. Samochody osobowe i pochodne. Warszawa: WKiŁ 2011.
  • 14. Konieczny Ł. Wykorzystanie metod drganiowych w ocenie stanu technicznego mechanicznych i hydropneumatycznych zawieszeń pojazdów samochodowych. Gliwice: Wyd. Politechniki Śląskiej 2015.
  • 15. Liss M, Żółtowski B. Analiza modalna jako metoda diagnozowania stanu nadwozi samochodów osobowych. Postępy w inżynierii mechanicznej Developments in mechanical engineering 2014; 3: 21–28.
  • 16. Livesey W A, Robinson A. The repair of vehicle bodies. Oxford 2006.
  • 17. Michalski R, Gonera J. Kompleksowa ocena stanu technicznego nadwozia samochodu. Studia i materiały polskiego stowarzyszenia zarządzania wiedzą; Bydgoszcz: Polskie Stowarzyszenie Zarządzania Wiedzą 2011; 47: 169–183.
  • 18. Milanés V, González C, Naranjo J E, Onieva E, Pedro T D. Electro-hydraulic braking system for autonomous vehicles. International Journal of Automotive Technology 2010; 11: 89−95, https://doi.org/10.1007/s12239-010-0012-6.
  • 19. Mizuno D, Suzuki S, Fujita S, Hara N. Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor. Corrosion Science 2014; 83: 217–225, https://doi.org/10.1016/j.corsci.2014.02.020.
  • 20. Ozdalyan B. Development of a slip control anti-lock braking system model. International Journal of Automotive Technology 2008; 9: 71–80, https://doi.org/10.1007/s12239-008-0009-6.
  • 21. Przybyłowski A. Stan infrastruktury transportu drogowego w Polsce z uwzględnieniem aspektów bezpieczeństwa. Research papers of Wrocław University of Economics 2014; 367: 261–271, https://doi.org/10.15611/pn.2014.367.29.
  • 22. Raatz B. Nowoczesne technologie pomiarów i napraw karoserii powypadkowych. Ząbrowo: Oficyna Wydawnicza Troton 2005.
  • 23. Reński A. Bezpieczeństwo czynne samochodu. Zawieszenia oraz układy hamulcowe i kierownicze. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej 2011.
  • 24. Stack M. Trade of vehicle body repair – Vehicle Measuring. Dublin: SOLAS 2014.
  • 25. Straky H, Kochem M, Schmitt J, Isermann R. Influences of braking system faults on vehicle dynamics. Control Engineering Practice 2003; 11: 337–343, https://doi.org/10.1016/S0967-0661(02)00301-5.
  • 26. Tobota A. Naprawy powypadkowe nadwozi, a bezpieczeństwo. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej 1997.
  • 27. Wallentowitz H. Virtuelle Fahrzeugentwicklung–Netzwerkeals Voraussetzungenzur Problemlosung. Berlin: Erfolg in Netzwerken; Springer – Verlag Berlin Heidelberg 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aaa93ca-f1f7-4c43-ad74-82ce51740616
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.