PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of calculation method of pure mode II stress intensity factor of fine-grained concrete using different numerical models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Measuring and calculating methods of critical stress intensity factors (SIFs) have become hot topics which attracted large attention recently. In this work, anti-symmetrical four-point bending tests of cracked fine-grained concrete specimens were conducted experimentally and numerically by using a computer-controlled universal testing machine and ABAQUS code. A comparative study of the calculation method of pure mode II stress intensity factor of a fine-grained concrete was performed by utilizing the conventional finite element method (FEM) in two and three dimensions as well as the extended finite element method (XFEM) in three dimensions. The results show that in three-dimensional models, the crack mode is closest to the pure mode II at the center of specimen thickness. Pure mode II stress intensity factors obtained by SEAM2D and XFEM3D are 1.013 and 1.0617 times that by SEAM3D, respectively. Pure mode II stress intensity factors of the fine-grained concrete obtained by the conventional FEM are more stable than that by XFEM. The number of mesh circles has slight influence on the calculation results of pure mode II stress intensity factor.
Rocznik
Strony
251--264
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Chengdu Surveying Geotechnical Research Institute Co., Ltd. of MCC, Chengdu, China
  • State Key Laboratory of Hydraulics and Mountain River Engineering, School of Architecture and Environment, Sichuan University, Chengdu, China
  • Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), School of Architecture and Environment, Sichuan University, Chengdu, China
autor
  • Chengdu Surveying Geotechnical Research Institute Co., Ltd. of MCC, Chengdu, China
autor
  • Chengdu Surveying Geotechnical Research Institute Co., Ltd. of MCC, Chengdu, China
autor
  • Chengdu Surveying Geotechnical Research Institute Co., Ltd. of MCC, Chengdu, China
autor
  • Chengdu Surveying Geotechnical Research Institute Co., Ltd. of MCC, Chengdu, China
autor
  • State Key Laboratory of Hydraulics and Mountain River Engineering, School of Architecture and Environment, Sichuan University, Chengdu, China
  • Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), School of Architecture and Environment, Sichuan University, Chengdu, China
autor
  • State Key Laboratory of Hydraulics and Mountain River Engineering, School of Architecture and Environment, Sichuan University, Chengdu, China
  • Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), School of Architecture and Environment, Sichuan University, Chengdu, China
Bibliografia
  • 1. ABAQUS HTML Documentation, 2016, Dassault Systemes.
  • 2. Braham A., Buttlar W., 2009, Mode II cracking in asphalt concrete, Advanced Testing and Characterization of Bituminous Materials, 2, 699-706.
  • 3. Dong W., Wu Z., Tang X., Zhou X., 2018, A comparative study on stress intensity factor-based criteria for the prediction of mixed mode I-II crack propagation in concrete, Engineering Fracture Mechanics, 197, 217-235.
  • 4. Fett T., 1999, Stress intensity factors for edge-cracked plates under arbitrary loading, Fatigue Fracture of Engineering Materials and Structures, 22, 4, 301-305.
  • 5. Golewski G.L., Golewski P., Sadowski T., 2012, Numerical modelling crack propagation under mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method, Computational Materials Science, 62, 75-78.
  • 6. He M.Y., Cao H.C., Evans A.G., 1990, Mixed-mode fracture: the four-point shear specimen, Acta Metallurgica et Materialia, 38, 5, 839-846.
  • 7. Irwin G.R., 1957, Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, 24, 361-364.
  • 8. Jankowiak T., Łodygowski T., 2010, Quasi-static failure criteria for concrete, Archives of Civil Engineering, 56, 2, 123-154.
  • 9. Kaplan M.F., 1961, Crack propagation and the fracture of concrete, Journal Proceedings, 58, 11, 591-610.
  • 10. Orowan E., 1949, Fracture and strength of solids, Reports on Progress in Physics, 12, 1, 185.
  • 11. Rice J.R., 1968, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, 35, 2, 379-386.
  • 12. Roth S.N., Léger P., Soulaïmani A., 2015, A combined XFEM-damage mechanics approach for concrete crack propagation, Computer Methods in Applied Mechanics and Engineering, 283, 923-955.
  • 13. Shih C.F., Moran B., Nakamura T., 1986, Energy release rate along a three-dimensional crack front in a thermally stressed body, International Journal of Fracture, 30, 2, 79-102.
  • 14. Stys D., Minch M., 1993, Influence of mode II stress intensity factor on the fracture toughness of concrete, International Conference on Fracture ICF8, Kiev, Ukraine.
  • 15. Wang C., Zhu Z.M., Liu H.J., 2016, On the I-II mixed mode fracture of granite using four-point bend specimen, Fatigue Fracture of Engineering Materials and Structures, 39, 10, 1193-1203.
  • 16. Wittmann F.H., Roelfstra P.E., Mihashi H., Huang Y.Y., Zhang X.H., Nomura N., 1987, Influence of age of loading, water-cement ratio and rate of loading on fracture energy of concrete, Materials and Structures, 20, 2, 103-110.
  • 17. Wu Y., Chen H., Wang X., 2017, Numerical flexibility determination method of stress intensity factor for concrete, Materials Science and Engineering Conference Series, 250, 1, 012040.
  • 18. Xu S.L., 2011, Fracture Mechanics of Concrete (in Chinese), Science Press, Beijing.
  • 19. Zhang X., Bui T.Q., 2015, A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures, Engineering Computations, 32, 2, 473-497.
  • 20. Zhang X.X., Ruiz G., Yu R.C., Tarifa M., 2009, Fracture behavior of high-strength concreto at a wide range of loading rates, International Journal of Impact Engineering, 36, 10-11, 1204-1209.
  • 21. Zhou C., Zhu Z., 2019a, Study of crack dynamic propagation behavior of fine-grained concrete under static loading, International Journal of Fracture, 220, 113-125.
  • 22. Zhou C., Zhu Z., Wang Z., Qiu H., 2018, Deterioration of concrete fracture toughness and elastic modulus under simulated acid-sulfate environment, Construction and Building Materials, 176, 490-499.
  • 23. Zhou C., Zhu Z., Zhu A., Zhou L., Fan Y., Lang L., 2019b, Deterioration of mode II fracture toughness, compressive strength and elastic modulus of concrete under the environment of acid rain and cyclic wetting-drying, Construction and Building Materials, 228, 116809.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aa84183-699e-4aa5-aca4-13ee0367d7a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.