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Abstract 

A crucial role in construction of the models related to accidents on Baltic Sea water and ports play 

nonhomogeneous Poisson and nonhomogeneous  compound Poisson  process. The model of consequences  and 

connected to it  model  of  accidents number on Baltic sea waters and ports are here presented. Moreover some 

procedures of  the models parameters  identification are presented in the paper. Estimation of some model 

parameters was made based on data from reports of HELCOM  [10, 11],  Interreg project Baltic LINes [9] and 

EMSA [13]. 

 
1. Introduction 

In the paper [7] the models  of  accidents number  in 

the Baltic Sea  waters and ports are  presented. A 

crucial role in construction of the models plays a 

Poisson process and its extensions especially a 

nonhomogeneous Poisson process. Moreover some 

procedures of  the model parameters  identification are 

presented in the paper. Estimation of models 

parameters was made based on available data coming 

from reports of HELCOM [10, 11] and Interreg 

project Baltic LINes [9]. The models allow us  to 

anticipate number of  accidents on Baltic Sea waters 

and ports in future. The nonhomogeneous  compound 

Poisson process as a model of the accidents  

consequences is  also presented  in this paper. 

Theoretical results [1], [2], [3], [4], [5] are applied   for 

anticipation of the fatalities number , number of 

injured people and lost ships  number in accidents at 

the Baltic Sea waters and  ports  in the specified time 

period. 

 

2. Nonhomogeneous Poisson process 

We will begin with a reminder of the concept of 

nonhomogeneous Poisson's process.  
 

Let   

𝜏0 = 𝜗0 = 0                                                           

 𝜏𝑛 = 𝜗1 + 𝜗2 + ⋯ + 𝜗𝑛, 𝑛 ∈ ℕ,                       (1)    

     

where  𝜗1, 𝜗2, … , 𝜗𝑛 are positive independent and 

idendical distributed random variables. Let 

 

   𝜏∞ = lim
𝑛→∞

𝜏𝑛 = sup{𝜏𝑛:  𝑛 ∈ ℕ0}.                      (2) 

 

A stochastic process {𝑁(𝑡):  𝑡 ≥ 0}  defined by the 

formula  

  

   𝑁(𝑡) = sup{𝑛 ∈ ℕ0:  𝜏𝑛 ≤ 𝑡}                              (3)    

                          

is called a counting process corresponding to a 

random sequence {𝜏𝑛 : ∈ ℕ0}. 

Let   {𝑁(𝑡):  𝑡 ≥ 0}  be a stochastic process  taking 

values on  𝑆 = {0,1,2, … }, value of which represents 

the number of events in a time interval [0, 𝑡].  
 

A counting process   {𝑁(𝑡):  𝑡 ≥ 0} is said to be 

nonhomogeneous  Poisson process  (NPP) with an 

intensity function     𝜆( 𝑡) ≥ 0,    𝑡 ≥ 0  ,   if 

1. 𝑃(𝑁(0) = 0) = 1 ;                                     (4) 

                                                                                                                                                

2. The process   {𝑁(𝑡):  𝑡 ≥ 0}  is the stochastic 

process with independent increments,  the 

right continuous and piecewise constant 

trajectories; 

 

3. 𝑃(𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 𝑘) = 
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(∫ 𝜆(𝑥)𝑑𝑥

𝑡+ℎ

𝑡
)

𝑘

𝑘 !
𝑒− ∫ 𝜆(𝑥)𝑑𝑥

𝑡+ℎ

𝑡 ;                                  (5)   

                                  

From this definition it follows that the one 

dimensional distribution of  NPP is given by the rule 

 

   𝑃(𝑁(𝑡) = 𝑘) =   
(∫ 𝜆(𝑥)𝑑𝑥

𝑡

0
)

𝑘

𝑘 !
𝑒− ∫ 𝜆(𝑥)𝑑𝑥

𝑡

0 ,             (6) 

    𝑘 = 0,1,2, … 

 

The expectation and  variance of NPP are the 

functions 

 

   Λ(𝑡) = 𝐸[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
 ,                           (7)  

 

     V(t) = 𝑉[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
,    𝑡 ≥ 0.            (8)   

                                         

 The corresponding standard deviation is 

  

   D(t) = √𝑉[𝑁(𝑡)] = √∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
,    𝑡 ≥ 0.      (9)           

 

The expected value of the increment 𝑁(𝑡 + ℎ) −
𝑁(𝑡)  is                                        

                           (10) 

Δ(𝑡; ℎ) = 𝐸(𝑁(𝑡 + ℎ) − 𝑁(𝑡)) = ∫ 𝜆(𝑥)𝑑𝑥.
𝑡+ℎ

𝑡
                                                                                               

 

The corresponding to it standard deviation is  

 

 σ(𝑡; ℎ) = √∫ 𝜆(𝑥)𝑑𝑥
𝑡+ℎ

𝑡
                                   (11)  

 

An nonhomogeneous Poisson process with 𝜆( 𝑡) = 𝜆,
𝑡 ≥ 0   for each t ≥ 0, is a regular Poisson process. The 

increments of an nonhomogeneous Poisson process 

are independent, but not necessarily stationary.  A 

nonhomogeneous Poisson process is a Markov 

process. 

 

3. Compound Poisson process 

Let {𝑁(𝑡): 𝑡 ≥ 0} be a Poisson proces  with intensity 

𝜆 > 0 and  𝑋1, 𝑋2, …   be sequence of independent 

and identically distributed (i.i.d.) random variables 

independent of {𝑁(𝑡): 𝑡 ≥ 0}. A stochastic process 

 

   𝑋(𝑡) = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡),   𝑡 ≥ 0               (12) 

 

is called a  compound Poisson process (CPP).  

The probability discrete distribution function of  
{𝑁(𝑡): 𝑡 ≥ 0} at  k  is 

 

 𝑝(𝑘; 𝑡) = 𝑃(𝑁(𝑡) = 𝑘) =   
(𝜆 𝑡)𝑘

𝑘 !
𝑒−𝜆 𝑡 ,  

  𝑘 = 0,1,2, …   
 

We quote a well-known result. 

If  𝐸(𝑋1
2) < ∞, then  

 

1. 𝐸[𝑋(𝑡)] = 𝜆 𝑡 𝐸(𝑋1),                                        (13) 

 

2. 𝑉[𝑋(𝑡)] =  𝜆 𝑡 𝐸(𝑋1
2) .                                  (14) 

 

The concepts and facts can be generalized. We  

assume now that {𝑁(𝑡): 𝑡 ≥ 0} is  a  nonhomogeneous  

Poisson process  (NPP) with an intensity function  

𝜆( 𝑡), 𝑡 ≥ 0  such that   𝜆( 𝑡) ≥ 0   for     𝑡 ≥ 0  ,   and  

𝑋1, 𝑋2, …  is a sequence of the independent and 

identically distributed (i.i.d.) random variables 

independent of      {𝑁(𝑡): 𝑡 ≥ 0}. A stochastic process 
{𝑋(𝑡): 𝑡 ≥ 0} determines by the formula 

 

   𝑋(𝑡) = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡),   𝑡 ≥ 0              (15) 

 

is said to be  a  nonhomogeneous compound Poisson 

process (NCPP) 

Proposition 1 

If {𝑁(𝑡): 𝑡 ≥ 0}    is  a  nonhomogeneous  Poisson 

process  (NPP) with an intensity function  𝜆( 𝑡), 𝑡 ≥

0   such that   𝜆( 𝑡) ≥ 0   for     𝑡 ≥ 0  then cumulative 

distribution function (CDF) of the nonhomogeneous 

compound Poisson process is given by the rule  

𝐺(𝑥, 𝑡) = 𝐼[0,∞)(𝑥)𝑒−Λ( 𝑡) + ∑ 𝑝(𝑘; 𝑡)𝐹𝑋
(𝑘)

(𝑥)∞
𝑘=1 ,      (16) 

where 

𝐹𝑋
(𝑘)

(𝑥)  denotes the k-fold convolution of CDF of 

the random variables  𝑋𝑖, i=1,2,…  and 

 

   𝑝(𝑘; 𝑡) =
(Λ( 𝑡))𝑘

𝑘 !
𝑒−Λ( 𝑡), 𝑡 ≥ 0, 𝑘 = 0,1, … ,  (17)            

 

   Λ( 𝑡) = 𝐸[𝑁(𝑡)] = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
                           (18) 

 

is discrete probability distribution of  NPP. 

 

Proof: Using total probability low  we obtain 

cumulative distribution function  (CDF) of  NCPP. 

 

    𝐺(𝑥, 𝑡) = 𝑃(𝑋(𝑡) ≤ 𝑥) =    
 

    =𝑃(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡) ≤ 𝑥) = 
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   = ∑ 𝑃(𝑋1 + ⋯ + 𝑋𝑁(𝑡) ≤ 𝑥|𝑁(𝑡) =  𝑘) ∙∞
𝑘=0    

 

   ∙ 𝑃(𝑁(𝑡) = 𝑘) = ∑ 𝑝(𝑘; 𝑡)𝐹𝑋
(𝑘)

(𝑥)∞
𝑘=0 = 

 

   = 𝐼[0,∞)(𝑥)𝑒−𝛬( 𝑡)  +  ∑ 𝑝(𝑘; 𝑡)𝐹𝑋
(𝑘)

(𝑥)∞
𝑘=1  .  

 

Conclusion 1 

If the random variables  , i=1,2,…  are absolutely 

continuous with density function  𝑓𝑋(∙),   then the 

density of NCPP is given by the rule  

 

   𝑔(𝑥, 𝑡) = ∑ 𝑝(𝑘; 𝑡)𝑓𝑋
(𝑘)

(𝑥)∞
𝑘=1 , 𝑥 ≠ 0, 𝑡 > 0, (19) 

 

where  𝑓𝑋
(𝑘)

(𝑥) denotes k –fold convolution of the 

density function 𝑓𝑋(𝑥).   
 

Example 1  

Let the random variables  𝑋𝑖, i=1,2,…  have normal 

distrbution  𝑁(𝑚, 𝜎). It means that a probabilility 

density function of   𝑋𝑖 = 𝑋 is  

 

   𝑓𝑋(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝑚)2

2 𝜎2 , 𝜎 > 0, 𝑚 ∈ (−∞, ∞), (20) 

   𝑥 ∈    (−∞, ∞). 
 

The sum  𝑋1 + 𝑋2 + ⋯ + 𝑋𝑘 has  normal distribution  

𝑁(𝑘𝑚, √𝑘𝜎). Hence it’s density is k –fold 

convolution of the density function 𝑓𝑋(𝑥)   given by 

(20): 

 

   𝑓𝑋
(𝑘)(𝑥) =

1

√2𝜋 √𝑘𝜎
𝑒

−
(𝑥−𝑘𝑚)2

2 𝑘 𝜎2  

 

Therefore the density of NCPP  given by  (19) takes 

the form 

 

   𝑔(𝑥, 𝑡) =
1

√2𝜋 𝜎
∑

(Λ( 𝑡))𝑘

√𝑘𝑘 !
𝑒−Λ( 𝑡)𝑒

−
(𝑥−𝑘𝑚)2

2 𝑘 𝜎2
∞

𝑘=1
,  

    𝑥 ≠ 0, 𝑡 > 0, 
 

 
Figure 1. The density functions of CPP  for 

λ = 0.4,  m =  10.2,  σ = 3.2 and t = 5, t = 10 

Conclusion 2 

If the random variables  𝑋𝑖, i=1,2,…  have a discrete 

probability function  𝑝𝑋(𝑥) = 𝑃(𝑋 = 𝑥), 𝑥 ∈ 𝑆   then 

the discrete probability distribution of NCPP is given 

by the rule  

 

   𝑔(𝑥, 𝑡) = ∑ 𝑝(𝑘; 𝑡)𝑝𝑋
(𝑘)

(𝑥)∞
𝑘=1 , 𝑡 > 0              (21) 

 

where 𝑝𝑋
(𝑘)

(𝑥) denotes k –fold convolution of the 

discrete  probability distribution  𝑝𝑋(𝑥).   
 

Example 2  

Assume that random variables 𝑋𝑖, 𝑖 = 1,2, …       

have a Poisson distribution with parameter 𝜇 > 0: 
 

   𝑝𝑋(𝑥) =
𝜇𝑥

𝑥! 
𝑒−𝜇 ,   𝑥 = 0,1,2, … . 

 

k –fold convolution of this discrete distribution 

functions is 

 

   𝑝𝑋
(𝑘)(𝑥) =

(𝑘𝜇)𝑥

𝑥! 
𝑒−𝑘𝜇 , 𝑥 = 0,1,2, …   . 

 

Then the rule (18) takes the form 

 

   𝑔(𝑥, 𝑡) = ∑
(Λ( 𝑡))

𝑘

𝑘 !
𝑒−Λ( 𝑡)∞

𝑘=1  
(𝑘𝜇)𝑥

𝑥! 
𝑒−𝑘𝜇 ,        (22) 

   𝑥 = 0,1,2, …   , 𝑡 > 0 
 

Assuming Λ( 𝑡) = 𝜆 𝑡,   𝑡 = 15,   𝜆 = 0.4,   𝜇 = 0.1 

we have computed probabilties (22) The results  are 

shown in Table 1.  

        

Table 1. The values of the function (22) 

x 0 1 2 3 

g(x,15) 0,562495 0,306725 0,098596 0,023906 

x 4 5 6 7 

g(x,15) 0,004804 0,000840 0,000132 0,000018 

 

Proposition 2 

Let  {𝑋(𝑡): 𝑡 ≥ 0}  be   a  nonhomogeneous compound 

Poisson process (NCPP). 

If  𝐸(𝑋1
2) < ∞, then  

 

1. 𝐸[𝑋(𝑡)] = 𝛬( 𝑡) 𝐸(𝑋1)                                  (23)                       

 

2. 𝑉[𝑋(𝑡)] =   Λ( 𝑡) 𝐸(𝑋1
2),                               (24)                    

. 

Proof: Applying the  property of conditional 

expectation  

 

t 5

t 10

20 40 60 80 100
x

0.005

0.010

0.015

0.020

0.025

0.030

0.035

g x,t
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   𝐸[𝑋(𝑡)] = 𝐸[𝐸(𝑋(𝑡)|𝑁(𝑡))] 
 

we have 

 

   𝐸[𝐸(𝑋(𝑡)|𝑁(𝑡))] = 

 

   = 𝐸 (𝐸(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡))|𝑁(𝑡)) = 

   

= ∑  𝐸(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡)|𝑁(𝑡) = 𝑛)𝑃(𝑁(𝑡)
∞

𝑛=0

= 𝑛) = 
 

   = ∑ 𝐸(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛) 𝑃(𝑁(𝑡) = 𝑛)
∞

𝑛=0
 

 

   = ∑ 𝐸(𝑋1) 𝑛 𝑃(𝑁(𝑡) = 𝑛) = 𝐸(𝑋1 )𝐸(𝑁(𝑡))
∞

𝑛=0
 

 

Using a formula    

 

   𝑉[𝑋(𝑡)] = 𝐸[𝑉(𝑋(𝑡)|𝑁(𝑡))] + 𝑉[𝐸(𝑋(𝑡)|𝑁(𝑡))]  
 

we get 

 

   

= ∑  𝑉(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡)|𝑁(𝑡) = 𝑛)𝑃(𝑁(𝑡)
∞

𝑛=0

= 𝑛) 
 

  = ∑  𝑉(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛) 𝑃(𝑁(𝑡) = 𝑛) =
∞

𝑛=0
 

 

   = ∑  𝑉(𝑋1) 𝑛 𝑃(𝑁(𝑡) = 𝑛) = 𝑉(𝑋1 )𝐸(𝑁(𝑡))
∞

𝑛=0
 

 

   = 𝑉(𝑋1 )Λ( 𝑡) , 
 

   𝑉[𝐸(𝑋(𝑡)|𝑁(𝑡))]= 

 

   = 𝑉 (𝐸(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁(𝑡))|𝑁(𝑡)) = 

 

   = 𝑉(𝐸(𝑋1)𝑁(𝑡)) = (𝐸(𝑋1))2𝑉(𝑁(𝑡)) = 

 

   = (𝐸(𝑋1))2𝛬(𝑡). 

 

Therefore  

 

   𝑉[𝑋(𝑡)]  = 𝑉(𝑋1 )Λ( 𝑡) + (𝐸(𝑋1))2 = 

 

   = 𝛬(𝑡)[𝐸(𝑋1
2) − (𝐸(𝑋1))2 + (𝐸(𝑋1))2] = 

 

   = Λ( 𝑡) 𝐸(𝑋1
2). 

 

 

Proposition 2 

Let  {𝑋(𝑡 + ℎ) − 𝑋(𝑡): 𝑡 ≥ 0}   be   an increament of  

compound nonhomogeneous Poisson process 

(CNPP). 

If  𝐸(𝑋1
2) < ∞, then  

 

    𝐸[𝑋(𝑡 + ℎ) − 𝑋(𝑡)] = Δ(𝑡; ℎ) 𝐸(𝑋1)               (25)      

                                                             

   𝐷[𝑋(𝑡 + ℎ) − 𝑋(𝑡)] =   √Δ(𝑡; ℎ) 𝐸(𝑋1
2),         (26)      

                 

where   

   Δ(𝑡; ℎ) = ∫ 𝜆(𝑥)𝑑𝑥
𝑡+ℎ

𝑡
. 

 

4. Corrected model of accidents number in 

Baltic Sea waters  and ports 

We will quote information from the paper [7], which 

is necessary for further consideration. Some mistakes 

in formulas  (15) and (16) are noticed by author. Now 

this mistakes are corrected. 

Assume that a stochastic process     {𝑁(𝑡);   𝑡 ≥ 0}   
taking values on  𝑆 = {0,1,2, … },  represents the 

number of accidents  in the Baltic Sea and  Seaports 

in a time interval [0, 𝑡). Due to the nature of these 

events,  pre-assumption that it is a nonhomogeneous 

Poisson process with some parameter  𝜆(𝑡) > 0 , 
seems to be justified.  The expected value of 

increment of this process is given by  (10) while its 

one dimensional distribution is determined by (5). We 

can use practically these rules if will know the 

intensity function 𝜆(𝑡) > 0. To define this function  

we utilize information presented in [5], [9], [10, 11]  

The statistical analysis of the data shows that the  

intensity  function 𝜆(𝑡) can  be approximated by the 

linear function   𝜆(𝑡) = 𝑎𝑡 + 𝑏. 

 

 
Figure 1. Total number of reporting  ship accidents   

in the Baltic Sea during 2004-2013 

 

4.1. Estimation of models parameters 

Dividing the number of accidents  in each year,  by 

0

50

100

150

200
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365 or 366 we get the intensity in units of [1 / day ]. 

The results are shown in Table 2.  We  approximate 

the empirical intensity by a linear regression function 

𝑦 = 𝑎𝑥 + 𝑏  that  satisfied condition 
 

   𝑆(𝑎, 𝑏) =   ∑  [𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏)]2

𝑛

𝑖=1

 → 𝑚𝑖𝑛 

 

Recall, that solution of above optimization problem 

leads to finding parameters  𝑎  and   𝑏. The parameters   

are   given by the rules: 

 

   𝑎 =
𝜇11

𝜇20
 ,         𝑏 = 𝑚01 − 𝑎𝑚10      ,                  (27)         

  

   �̅� = 𝑚10 =
1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1 ,      �̅� = 𝑚01 =

1

𝑛
 ∑ 𝑦𝑖 ,𝑛

𝑖=1    

 

   𝑚11 =
1

𝑛
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1  ,        𝜇11 = 𝑚11 − 𝑚10 𝑚01 ,    

 

   𝑚20 =
1

𝑛
 ∑ 𝑥𝑖

2𝑛
𝑖=1 ,           𝜇20 =   𝑚20 − 𝑚10

2 

 

Table 2. The empirical intensity of accidents in the         

Baltic Sea waters and ports 

Year Interval  Center 

of 

interval 

Number 

of 

accidents 

Intensity   

[1/day] 

2004 [0, 366) 183 133 0,36338 

2005 [366,731) 731,5 146 0,40000 

2006 [731, 1096) 913,5 115 0,31506 

2007 [1096, 1461) 1278,5 118 0,32328 

2008 [1461, 1827) 1644 138 0,37704 

2009 [1827, 2192) 2009,5 115 0,31506 

2010 [2192, 2557) 2374,5 127 0,34794 

2011 [2557, 2922) 2374,5 143 0,39178 

2012 [2922, 3288) 3105 148 0,40437 

2013 [3288, 3653) 3470,5 149 0,40821 

 

Applaying the rules  (27) for the data from Table 2 and 

using Excel system we obtain 

 

    𝑎 = 0,000014756,       𝑏 =  0,337925722.    (28)    

                         

The linear intensity of accidents is 

 

   𝜆(𝑥) = 0,000014756 𝑥 + 0,337925722         (29) 

    𝑥 ≥ 0 .  
 

From (7) we have 

    Λ(𝑡) = ∫ (0,000014756 𝑥 + 0,337925722)𝑑𝑥.
𝑡

0
  

 

Hence we obtain 

   Λ(𝑡) = 0,0000073782 𝑡2 +
    0,337925722 𝑡,                                                       (30) 

   𝑡 ≥ 0.   
 

Therefore the one dimensional distribution of  NPP is  

 

   𝑃(𝑁(𝑡) = 𝑘) =   
(𝛬(𝑡))

𝑘

𝑘 !
𝑒−𝛬(𝑡),   𝑘 = 0,1,2, … ,(31)    

     

where    Λ(𝑡)  is given by (30). 

Finnally we can say that the model of the accident 

number in the Baltic Sea waters and port is the 

nonhomogeneous Poisson process with the parameter 

Λ(𝑡),   𝑡 ≥ 0  determines by (30). 

 

5. Anticipattion of the accident number  

From (5) and ( 11) we  get 

 

   𝑃(𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 𝑘) =                               (31) 

 

   =
𝛥(𝑡; ℎ)

𝑘 !
𝑒−[𝛥(𝑡;ℎ)]. 

 

It  means that we can anticipate number of accidents 

at any time interval with a length of h. The expected 

value of the increment 𝑁(𝑡 + ℎ) − 𝑁(𝑡) is defined by 

(10). For the function 

 

    𝛬(𝑡) = 𝑎
𝑡2

2
+ 𝑏 𝑡   

 

we obtain the expeted value of the accidents at  time 

interval   [𝑡, 𝑡 + ℎ) 

 

   Δ(𝑡; ℎ) = ℎ( 
𝑎 ℎ

2
+ 𝑏 + 𝑎 𝑡) ,                            (32) 

 

The corresponding standard deviation is  

 

   σ(𝑡; ℎ) = √ℎ( 
𝑎 ℎ

2
+ 𝑏 + 𝑎 𝑡) .                         (33) 

Example 1 

We want to predict the number of accidents from  June 

1 of 2017 to August 30 of 2017. We also want to 

calculate the probability of a given number of 

accidents. 

First we have to determine parameters   𝑡  and   ℎ .  As 

extention  of table 2 on year 2017 we obtain an interval    

[4749, 5114). 
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From January 1 of 2017 to June 1 of 2017 have pased 

151 days. Hence  𝑡 = 4749 + 151 = 4900. 

From June 1 to  August 31 have passed  ℎ =92  days. 

For these parameters using  (32) and (33)   we obtain 

 

   Δ(𝑡; ℎ) = 34.45,      σ(𝑡; ℎ) = 5.87                      

 

This means that the average predicted number of 

accidents between  June 1, 2017 and  August 31, 2017 

is about 34 with a standard deviation of about 6.  

Probability that the number of accidents  at the Baltic 

Sea waters and ports in considered interval of time is 

not greater than  d=45 and not less that c=25 is 

 

   𝑃25≤𝑘≤45 = 𝑃(25 ≤ 𝑁(𝑡 + ℎ) − 𝑁(𝑡) ≤ 45) = 
 

   = ∑
34.45𝑘

𝑘 !
𝑒−34.45𝑘=45

𝑘=25 ;  

 

Applying approximation  by normal distribution we 

get 

 

   𝑃25≤𝑘≤45 = 𝛷 (
45 − 34.45

5.87
) − 𝛷 (

25 − 34.45

5.87
) = 

   = 𝛷(1.7972) − 𝛷(−1.6098) = 0.910. 

 

6. Models describing number of accidents at 

the Baltic ports 

In  the article [7] reasoned that, the intensity function 

of the  process  𝑁1(t)   describing  number of accidents 

at the Baltic ports is given by 

 

   𝜆1(𝑥) = 0,44 × 𝜆(𝑥).                                       (34) 

 

Because  

   𝑎1 = 0,44 × 000014756 = 0,00000649264  (35)  

   

and 

 

  𝑏1 = 0,44 × 0,337925722 = 0,14868731768(36) 

 

then 

 

𝜆1(𝑥) = 0,00000649264  𝑥 + 0,14868731768 (37) 

 

The expected value and  corresponding standard 

deviation of the accidents at  time interval   [𝑡, 𝑡 + ℎ) 

are 

 

   Δ1(𝑡; ℎ) = 𝑎1  
ℎ2

2
+ 𝑏1 ℎ + 2𝑎1𝑡 ℎ ,                    (38) 

 

   σ1(𝑡; ℎ) = √𝑎1
 ℎ2

2
+ 𝑏1ℎ + 2 𝑎1 𝑡  .                  (39) 

 

 

Example 2 

We want to anticipate the number of accidents in the 

ports  of Baltic Sea from  June 1 , 2017 to August  31, 

2017. We calculate the probability of a given number 

of that kind of accidents. Parameters  𝑡   and  ℎ are the 

same like in example l, parameters 𝑎1  and   𝑏1 are 

given by  (36) and (37). From  (39) and (40) we obtain 

the expected value and standard deviation of  

accidents  in  ports of Baltic Sea and in the time period  

[𝑡, 𝑡 + ℎ) . 

 

   Δ1(𝑡; ℎ) =13,77,     𝜎1(𝑡; ℎ) = 3,71 
 
For example, probability that the number of accidents  

in the Baltic Sea Ports in  this time period is not greater 

than  d=20 and not less that c=10 is approximately 

equal to  

 

   𝑃10≤𝑘≤20 = 𝛷 (
20−13,77

3,71
) − 𝛷 (

10−13,77

3,71
) =  

 

   = 𝛷(1,68) − 𝛷(−1,02) = 0.799. 

 

7. Anticipation of the accident consequences 

Let  𝑋𝑖 ,   𝑖 = 1,2, … , 𝑁(𝑡)  denotes number of 

fatalities  or  injuried poeople or  ships lost in i-th 

accident. We suppose that the random variables 

𝑋𝑖 , 𝑖 = 1,2, … have the identical Poisson distribution 

with parameters  

 

   𝐸(𝑋𝑖) = 𝑉(𝑋𝑖) = 𝜇,   𝑖 = 1,2, … , 𝑁(𝑡).   

 

The predicted number of fatalities in the time interval 

[𝑡, 𝑡 + ℎ) is described by the expectation of the 

increment   𝑋(𝑡 + ℎ) − 𝑋(𝑡) . 

Recall that the expected value  and standard deviation 

of the accidents number in the time interval   [𝑡, 𝑡 + ℎ) 

are given by (10) and (11).  

To calculate the expected number of fatalities in the 

considered time interval we  apply Proposition 2.  

 

Example 3 

We want to anticipate the number of fatalities in 

accidents in the Baltic Sea waters and  ports  from  

June 1 , 2017 to August  31, 2017.  

For the data from  Example 1 using  (24) and (25) we 

obtain the expected value of  fatalities  in the time  

interval [𝑡, 𝑡 + ℎ): 

 

   𝑬𝑭𝑵= Δ(𝑡; ℎ) ×  𝜇                                             (40) 

 

and  the  standard deviation 

 

   𝑫𝑭𝑵 = √Δ(𝑡; ℎ) × (𝜇 + 𝜇2)  .                          (41) 
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We know that the average of the sample is an unbiased 

estimator of the expected value. Unfortunately, 

reliable data are not available for the moment. We  

roughly estimate this parameter using data   presented 

in EMSA  reports  [12, 13] and paper [6 ]. These data’s 

are only partially consistent with the previous ones. 

The approximate estimate of the parameter 𝜇 is the 

number 

 

   𝝁 = 𝟎, 𝟎𝟓𝟔 . 

 

Applying (40) and (41) we get 

 

   𝑬𝑭𝑵 = 𝟏, 𝟗𝟐𝟗𝟐   and     𝑫𝑭𝑵 = 𝟏, 𝟒𝟐𝟕𝟑 . 

 

In this case, the formula (19) takes the form 

 

   𝑔(𝑥, 𝑡; ℎ) = ∑
Δ(𝑡;ℎ)𝑘

𝑘 !
𝑒−Δ(𝑡;ℎ)∞

𝑘=1  
(𝑘𝜇)𝑥

𝑥! 
𝑒−𝑘𝜇 ,   (42)         

   𝑥 = 0,1,2, …   , 𝑡 > 0. 

 

For 𝑡 = 4900,   ℎ = 92  we have Δ(𝑡; ℎ) = 34.45. 

Using  (43), for   𝜇 = 0,056   we obtain a predicted 

dystribution of fatalities in accidents at the Baltic Sea 

and   ports  from  June 1 , 2017 to August  31, 2017.  

Table 3 and Figure 2 show this distribution. 

We can see that the most probable numbers of 

fatalities are 1 and 2. The probability that there will be 

no fatal accident is only about 15%. 

Table 3. Distribution of fatalities number 

x 0 1 2 3 

g(x) 0,153175 0,279411 0,262665 0,169372 

x 4 5 6 7 

g(x) 0,0841492 0,0343135 0,0119478 0,0036499 

 

 
Figure 2. Distribution of fatalities number 

 

We can see that the most probable numbers of 

fatalities are 1 and 2. The probability that there will be 

no fatal accident is only about 15%. 

 

Example 4 

The predicted number of  injured person in accidents 

in the Baltic Sea and  Ports  from  June 1 , 2017 to 

August  31, 2017  we will get in a similar way. In this 

case  

𝝁 = 𝟎, 𝟐𝟐𝟒. 

 

For the data from Example 3  using  (41) and (42) we 

obtain an expected value and a standard  deviation of  

injured people number at considered period.  

 

𝑬𝑵𝑰= 34,45 ×  0,224 = 7,7168     

 

𝑫𝑵𝑰 = √34,45 × (0,224 + 0,2242)= 3,0733 

 

Equality (42) allows to compute predicted 

dystribution of the injured person number. The results 

are shown in Table 4  and Figure 3. 

Table 4. Distribution of injured person number 

x 0 1 2 3 

g(x) 0,0009942 0,0061322 0,019599

1 

0,0431724 

x 4 5 6 7 

g(x) 0,0735834 0,103326 0,124318 0,131639 

x 8 9 10 11 

g(x) 0,125075 0,108205 0,086211 0,063839 

x 12 13 14 15 

g(x) 0,0442636 0,0289157 0,017890

2 

0,0105299 

x 16 17 18 19 

g(x) 0,0059186 0,0031876 0,001649 0,0008226 

 

 
Figure 3.  Distribution of injured person number 

 

Example 5 

For the ships lost number in accidents in the Baltic Sea 

and  Sea Ports  in considered time interval parameter 
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𝜇 is 

   𝝁 = 𝟎, 𝟎𝟏𝟔 . 

 

For the data from Example 3  using  (40) and (41) we 

obtain an expected value and standard  deviation of 

the ships lost number in considered period.  

 

   𝑬𝑰𝑵= 34,45 ×  0,016 = 0,5512    

  

   𝑫𝑰𝑵 = √34,45 × (0,016 + 0,0162)= 0,74834  

 
Equality (42) allows to compute predicted 

dystribution of injured person number. The results are 

shown in Table 5. 

 

Table 5. Dystribution of ships lost number 

x 0 1 2 3 

g(x) 0,578791 0,313966 0,0876672 0,0167734 

x 4 5 6 7 

g(x) 0,0024704 0,00029833 0,00003074 0,0000003 

 

 

 

 

 

 

 

 

 

 

Figure 4. Distribution of ships lost number 

We can notice that  the most probable is no ships lost. 

This probability is about 58%. 

  
8. Conclusions 

The  random processes theory deliver concepts and 

theorems that enable to construct   stochastic models  

concerning accidents. The counting processes and  

processes with independent increaments are the most  

appropriate for modelling  number of the accidents 

number in Baltic Sea waters  and   ports in specified 

period of  time. A crucial role in the models 

construction  plays a nonhomogeneous Poisson 

process  and   nonhomogeneous   compound   Poisson 

 

process. Based on  the nonhomogeneous Poisson 

process the models of accidents number in the Baltic 

Sea waters  and Seaports have been constructed. 

Moreover some procedures of  the model parameters  

identification are presented in the paper. Estimation of 

model parameters was made based on data from 

reports of HELCOM (2014) and Interreg project 

Baltic LINes (2016-2019).  

The nonhomogeneous  compound Poisson process as 

a model of the accidents  consequences is  also 

presented  in this paper. Theoretical results are applied   

for anticipation the number of fatalities, number 

injured people and number lost ships  in accidents at 

the Baltic Sea waters and  ports  in specified period of  

time. 
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