PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation of Hardfacing Deposits Obtained by Using Submerged Arc Welding Fluxes Containing High-Carbon Ferrochromium and Ferroboron

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hardfacing deposition processes were carried out using unalloyed S1-EL12 welding wire and submerged arc welding fluxes produced by agglomerated method containing 4-16 wt.% ferrochromium and 2 wt.% ferroboron to achieve wear-resistant of hardfacing deposits on common steel substrates via submerged arc welding. Typical parameters such as slag detachment behaviour, measurements of weld seam widths and heights, microstructural examinations, and hardness and wear tests of hardfacing deposits were characterized. End of the characterization processes, with the increase of chromium, carbon, and boron transition from welding fluxes to hardfacing deposits, the welding seam widths, and heights were determined to increase from 14.12 mm to 15.65 mm and 6.14 mm to 6.50 mm, respectively. Besides; carbide and boro-carbide ratios in the microstructures increased, the hardness values increased from 43 HRC to 61 HRC and the wear losses decreased from 5.79 to 4.43. (10-7 mm3 (Nm)-1).
Twórcy
  • University of Firat, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Elazig, 23000, Turkey
  • University of Firat, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Elazig, 23000, Turkey
Bibliografia
  • [1] M. Nagentrau, A.L. Mohd Tobi, M. Sambu, S. Jamian, The Influence of Welding Condition on the Microstructure of WC Hardfacing Coating on Carbon Steel Substrate. Int. J. Refract. Met. H. 82, 43-57 (2019). DOI: https://doi.org/10.1016/j.ijrmhm.2019.03.029
  • [2] G.S. Ham, D.Y. Wi, S.H. Park, K.A. Lee, Effect of High-Frequency Heat Treatment on the Microstructure and Macroscopic Properties of WC-50Ni+Stellite 1 Coating Layer Fabricated by HVOF Spray Process. Arch. Metall. Mater. 65, 1087-1092 (2020). DOI: https://doi.org/10.24425/amm.2020.133222
  • [3] K.W. Kim, Y.K. Kim, S.H. Park, K.A. Lee, Laser Cladding of WC/T-800 Cermet: Fabrication, Microstructure, and Wear Properties. Arch. Metall. Mater. 66, 713-717 (2021). DOI: https://doi.org/10.24425/amm.2021.136367
  • [4] H.Z. Oo, P. Muangjunburee, Wear Behaviour of Hardfacing on 3.5% Chromium Cast Steel by Submerged Arc Welding. Mater. Today: Proc. 5, 9281-928 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.10.101
  • [5] M. Kılıç, Microstructural Characterization of Ni-Based B4C Reinforced Composite Coating Produced by tungsten Inert Gas Method. Arch. Metall. Mater. 66, 917-924 (2021). DOI: https://doi.org/10.24425/amm.2021.136398
  • [6] M.H. Amushahi, F. Ashrafizadeh, M. Shamanian, Characterization of Boride-rich Hardfacing on Carbon Steel by Arc Spray and GMAW Processes. Surf. Coat. Technol. 204, 2723-2728 (2010). DOI: https://doi.org/10.1016/j.surfcoat.2010.02.028
  • [7] E.N. Eremin, A.S. Losev, Wear Resistance Increase of Pipeline Valves by Overlaying Welding Flux-cored Wire. Procedia Eng. 113, 435-440 (2015). DOI: https://doi.org/10.1016/j.proeng.2015.07.324
  • [8] M. Zhang, M. Li, J. Chi, S. Wang, L. Ren, M. Fang, Microstructure and Tribology Properties of In-situ MC(M:Ti,Nb) Coatings Prepared via PTA Technology. Vacuum 160, 264-271 (2019). DOI: https://doi.org/10.1016/j.vacuum.2018.11.035
  • [9] R. Zahiri, R. Sundaramoorthy, P. Lysz, C. Subramanian, Hardfacing Using Ferro-alloy Powder Mixtures by Submerged Arc Welding. Surf. Coat. Technol. 260, 220-229 (2014). DOI: https://doi.org/10.1016/j.surfcoat.2014.08.076
  • [10] B. Srikarun, H.Z. Oo, S. Petchsang, P. Muangjunburee, The Effects of Dilution and Choice of Added Powder on Hardfacing Deposited by Submerged Arc Welding. Wear 424-425, 246-254 (2019). DOI: https://doi.org/10.1016/j.wear.2019.02.027
  • [11] K. Yang, Z. Zhang, W. Hu, Y. Bao, Y. Jiang, A New Type of Submerged-arc Flux-cored Wire Used for Hardfacing Continuous Casting Rolls. J. Iron Steel Res. Int. 18, 74-79 (2011). DOI: https://doi.org/10.1016/S1006-706X(11)60120-9
  • [12] B. Srikarun, P. Muangjunburee, The Effect of Iron-based Hardfacing with Chromium Powder Addition onto Low Carbon Steel. Mater. Today: Proc. 5, 9272-9280 (2018). DOI: https://doi.org/10.1016/J.MATPR.2017.10.100
  • [13] V.V. Golovko, N. Potapov, Special Features of Agglomerated (Ceramic) Fluxes in Welding. Weld. Int. 25, 11, 889-893 (2011). DOI: https://doi.org/10.1080/09507116.2011.581431
  • [14] R. Oates, M.A. Saitta, Welding Handbook, Materials and Applications, Miami, FL, 33126, American Welding Society, 2000.
  • [15] https://www.magmaweld.com.tr/sw-701/uo/7985
  • [16] K.A. Reddy, Non-destructive Testing, Evaluation of Stainless Steel Materials. Mater. Today: Proc. 4, 7302-7312 (2017). DOI: https://doi.org/10.1016/j.matpr.2017.07.060
  • [17] ASTM G132-96, Standard Test Method for Pin Abrasion Testing, ASTM International, West Conshohocken, PA, 2018.
  • [18] R. Mugele, H.D. Evans, Droplet Size Distribution in Sprays, J. Indst. and Eng. Chem. 43, 1317-1324 (1951). DOI: https://doi.org/10.1021/ie50498a023
  • [19] https://www.lincolnelectric.com/en-us/consumables/submergedarc/Pages/submerged-arc.aspx
  • [20] https://www.esabna.com/us/en/products/filler-metals/submergedarc-wires-fluxes-saw/cladding-fluxes/index.cfm
  • [21] https://www.magmaweld.com/subarc-wires-fluxes/o/40
  • [22] B. Singh, Z.A Khan, A.N. Siddiquee, Review on Effect of Flux Composition on Its Behavior and Bead Geometry in Submerged Arc Welding (SAW). Int. J. Eng. Res. Technol. 7, 12-12 (2013).
  • [23] T. Coetsee, F.J. De Bruin, Reactions at The Molten Flux-Weld Pool Interface in Submerged Arc Welding. High Temp. Mater. Process. 40, 421-427 (2021). DOI: https://doi.org/10.1515/htmp-2021-0051
  • [24] A.V. Yarovchuk, Effect of Ferrochrome Content on The Oxidation Reduction Processes in Welding Slags Based on Titanium Dioxide. Weld. Int. 19 (8), 651-656 (2005). DOI: https://doi.org/10.1533/wint.2005.3502
  • [25] N.A. Kozyrev, R.E. Kryukov, V.Y. Bendre, N.E. Kryukov, I.N. Kovalskiy, Carbon-containing Additions For Welding Fluxes. Weld. Int. 31 (5), 369-373 (2017). DOI: https://doi.org/10.1080/09507116.2016.1263459
  • [26] H. Lin, L. Ying, L. Jun, L. Binghong, Microstructure and Mechanical Properties for TIG Welding Joint of High Boron Fe-Ti-B Alloy. Rare Metal Mat. Eng. 43, 283-286 (2014). DOI: https://doi.org/10.1016/S1875-5372(14)60059-X
  • [27] N. Yüksel, S. Sahin, Wear Behavior-Hardness-Microstructure Relation of Fe-Cr-C and Fe-Cr-C-B Based Hardfacing Alloys. Mater. Des. 58, 491-498 (2014). DOI: https://doi.org/10.1016/J.MATDES.2014.02.032
  • [28] M. Kirchgaßner, E. Badisch, F. Franek, Behaviour of Iron-Based Hardfacing Alloys under Abrasion and Impact. Wear 265, 772-779 (2008). DOI: https://doi.org/10.1016/j.wear.2008.01.004
  • [29] H. Berns, A. Fischer, Microstructure of Fe-Cr-C-B Alloys Addition of Nb, Ti and B. Metallography 20, 401-429 (1987).
  • [30] J. Lippold C, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steel, Wiley Interscience, John Wiley and Sons Inc. Publication, ISBN O-471-47379-0, 10-12 (2005).
  • [31] C. Du, J.P.M. Hoefnagels, S. Kölling, M.G.D. Geers, J. Sietsma, R. Petrov, V. Bliznuk, P.M. Koenraad, D. Schryvers, B. Amin Ahmadi, Martensite Crystallography and Chemistry in Dual Phase and Fully Martensitic Steels. Mater. Charact. 139, 411-420 (2018). DOI: https://doi.org/10.1016/j.matchar.2018.03.011
Uwagi
This work was supported by a grant from the scientific and technological research council of Turkey, TUBITAK (Project No: 114M016). The authors acknowledge the laboratory staff of the department of metallurgical and materials engineering from Firat University, TR for performing an effort to set up experimental design.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aa3d647-5492-4ff4-8547-ecd6661192ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.