PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural Properties of Thin Fly Ash Geopolymers at Elevated Temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports on the flexural properties of thin fly ash geopolymers exposed to elevated temperature. The thin fly ash geopolymers (dimension = 160 mm × 40 mm × 10 mm) were synthesised using 12M NaOH solution mixed with designed solids-to-liquids ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 and underwent heat treatment at different elevated temperature (300°C, 600°C, 900°C and 1150°C) after 28 days of curing. Flexural strength test was accessed to compare the flexural properties while X-Ray Diffraction (XRD) analysis was performed to determine the phase transformation of thin geopolymers at elevated temperature. Results showed that application of heat treatment boosted the flexural properties of thin fly ash geopolymers as the flexural strength increased from 6.5 MPa (room temperature) to 16.2 MPa (1150°C). XRD results showed that the presence of crystalline phases of albite and nepheline contributed to the increment in flexural strength.
Twórcy
autor
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer and Green Technology (CeGeoGTech), Kangar, 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer and Green Technology (CeGeoGTech), Kangar, 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer and Green Technology (CeGeoGTech), Kangar, 01000 Perlis, Malaysia
  • Universiti Malaysia Faculty of Mechanical Engineering Technology, Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer and Green Technology (CeGeoGTech), Kangar, 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kangar, 01000 Perlis, Malaysia
autor
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer and Green Technology (CeGeoGTech), Kangar, 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  • Ceramic Research Company Sdn Bhd (Guocera-Hong Leong Group), Lot 7110, 5½ Miles, Jalan Kapar, 42100 Klang, Selangor, Malaysia
Bibliografia
  • [1] H.N. Hamzah, M.M.A.B. Abdullah, H. Cheng-Yong, M. Zainol, M.N.M. Nawi, Malays. Constr. Res. J. 3, 155-162 (2018).
  • [2] R. Ahmad, M.M.A.B. Abdullah, W.M.W. Ibrahim, K. Hussin, F.H. Ahmad Zaidi, J. Chaiprapa, J.J. Wysłocki, K. Błoch, M. Nabiałek, Materials 14, 1077 (2021).
  • [3] M.A. Faris, M.M.A.B. Abdullah, R. Muniandy, M.F. Abu Hashim, K. Błoch, B. Jeż, S. Garus, P. Palutkiewicz, N.A. Mohd Mortar, M.F. Ghazali, Materials 14, 1310 (2021).
  • [4] N.H. Jamil, M.M.A.B. Abdullah, F. Che Pa, M. Hasmaliza, W.M.A. Ibrahim, I.H.A. Aziz, B. Jeż, M. Nabiałek, Magnetochemistry 7, 32 (2021).
  • [5] N.F. Shahedan, M.M.A.B. Abdullah, N. Mahmed, A. Kusbiantoro, S. Tammas-Williams, L.Y. Li, I.H. Aziz, P. Vizureanu, J.J. Wysłocki, K. Błoch, and M. Nabiałek, Materials 14, 809 (2021).
  • [6] N. Ariffin, M.M.A.B. Abdullah, P. Postawa, S.Z.A. Rahim, M.R.R.M.A. Zainol, R.P. Jaya, A. Śliwa, M.F. Omar, J.J. Wysłocki, K. Błoch, M. Nabiałek, Materials 14, 814 (2021).
  • [7] O.H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.A. Jin, N.H. Teng, M. Nabiałek, B. Jeż, N.Y. Sing, Magnetochemistry 7 (1), 9 (2021).
  • [8] W.W.A. Zailani, M.M.A.B. Abdullah, M.F. Arshad, R.A. Razak, M.F.M. Tahir, R.R.M.A. Zainol, M. Nabialek, A.V. Sandu, J.J. Wysłocki, K. Błoch, Materials 14, 56 (2021).
  • [9] O. Shee Ween, H. Cheng-Yong, M.M.A.B. Abdullah, L.N. Ho, O. Wan En, “Geopolymer via Pressing Method: Aluminosilicates / Alkaline Solution Ratio as the Determining Factor”. (Joint Conference on Green Engineering Technology & Applied Computing, 2020), pp. 012164.
  • [10] H.N. Hamzah, M.M.A.B. Abdullah, H. Cheng-Yong, M.R.R.M.A. Zainol, A.M. Nor, A.Z.W. Wazien, Correlation of the Na2SiO3 to NaOH Ratios and Solid to Liquid Ratios to the Kedah’s Soil Strength”. (International Conference on Green Design and Manufacture, 2016), pp. 01071.
  • [11] F. Fan, Z. Liu, G. Xu, H. Peng, C.S. Cai, Constr. Build. Mater. 160, 66-81 (2018).
  • [12] H.N. Hamzah, M.M.A.B. Abdullah, H. Cheng Yong, M.R.R.M.A. Zainol, K. Hussin, Key Eng. Mater. 660, 298-304 (2015).
  • [13] R. Junru, C. Huiguo, D. Ruixi, S. Tao, “Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperature”. (IOP Conference Series: Earth and Environmental Science, 2019), pp. 032056.
  • [14] H.Y. Zhang, V. Kodur, B. Wu, J. Yan, Z.S. Yuan, Constr. Build. Mater. 163, 277-285 (2018).
  • [15] Z. Pan, Z. Tao, Y.F. Cao, R. Wuhrer, T. Murphy, Cem. Concr. Compos. 86, 9-18 (2018).
  • [16] P. Nath, P.K. Sarker, Constr. Build. Mater. 130, 22-31 (2017).
  • [17] K. Sakkas, D. Panias, P. Nomikos, A. Sofianos, Tunnelling Underground Space Technol. 43, 148-156 (2014).
  • [18] D.L.Y. Kong, J.G. Sanjayan, Cem. Concr. Compos. 30 (10), 986-991 (2008).
  • [19] M. Schmücker, K.J. MacKenzie, Ceram. Int. 31 (3), 433-437 (2005).
  • [20] N. Ranjbar, M. Mehrali, U.J. Alengaram, H.S.C. Metselaar, M.Z. Jumaat, Constr. Build. Mater. 65, 114-121 (2014).
  • [21] K. Zulkifly, H. Cheng-Yong, M.M.A.B. Abdullah, K. Hussin, “Thermal Exposure of Fly Ash-Metakaolin Blend Geopolymer with Addition of Monoaluminum Phosphate (MAP)”. (Joint Conference on Green Engineering Technology & Applied Computing, 2020), pp. 012011.
  • [22] A.M. Rashad, S.R. Zeedan, Constr. Build. Mater. 25 (7), 3098-3107 (2011).
  • [23] M. Lahoti, K.K. Wong, E.H. Yang, K.H. Tan, Ceram. Int. 44 (5), 5726-5734 (2018).
  • [24] R.E. Lyon, P. Balaguru, A. Foden, U. Sorathia, J. Davidovits, M. Davidovics, Fire Mater. 21 (2), 67-73 (1997).
  • [25] M. Yadollahi, A. Benli, R. Demirboğa, Plast. Rubber Compos. 44 (6), 226-237 (2015).
  • [26] W.D. Rickard, A.V. Riessen, Cem. Concr. Compos. 48, 75-82 (2014).
  • [27] J.G. Sanjayan, A. Nazari, L. Chen, G.H. Nguyen, Constr. Build. Mater. 79, 236-244 (2015).
  • [28] Z.F. Farhana, H. Kamarudin, A. Rahmat, A.M.M. Al Bakri, Mater. Sci. Forum. 803, 166-172 (2014).
  • [29] F. Shaikh, V. Vimonsatit, Fire Mater. 39, 174-188 (2015).
  • [30] O. A. Abdulkareem, Journal of Materials and Applications. 6, 1-12 (2017).
  • [31] K.K. Mandal, T. Suresh, R. Mithun, Int. J. Civ. Environ. Eng. 5, 7-13 (2011).
  • [32] F. Škvára, T. Jílek, L. Kopecký, Ceram.-Silik. 49 (3), 195-204 (2005).
  • [33] Z. Pan, J.G. Sanjayan, F. Collins, Cem. Concr. Res. 56 (Supplement C), 182-189 (2014).
  • [34] F.N. Okoye, J. Durgaprasad, N.B. Singh, Ceram. Int. 42 (2), 3000-3006 (2016).
  • [35] P.K. Sarker, S. Kelly, Z. Yao, Mater. Des. 63, 584-592 (2014).
  • [36] X. Li, X. Ma, S. Zhang, E. Zheng, Materials (Basel). 6 (4), 1485-1495 (2013).
  • [37] H.N. Hamzah, H.N., M.M.A.B. Abdullah, C.Y. Heah, M.R.R.A. Zainol, K. Hussin, Mater. Sci. Forum. 841, 59-64 (2016).
  • [38] E.A. Azimi, C.Y. Heah, M.M.A.B. Abdullah, K. Hussin, Y.M. Liew, I. Hake, Rev. Adv. Mater. Sci. 44, 273-285 (2016).
  • [39] E. Kamseu, C. Djangang, P. Veronesi, A. Fernanda, U.C. Melo, V.M. Sglavo, C. Leonelli, Mater. Des. 88, 336-344 (2015).
  • [40] D.D. Burduhos Nergis, M.M.A.B. Abdullah, P. Vizureanu, European Journal of Materials Science and Engineering 2 (4), 111-118 (2017).
  • [41] D.D. Burduhos Nergis, M.M.A.B. Abdullah, A.V. Sandu, P. Vizureanu, Materials 13 (2), 343 (2020).
  • [42] P. He, D. Jia, S. Wang, J. Eur. Ceram. Soc. 33 (4), 689-698 (2013).
  • [43] W.D. Rickard, J. Temuujin, A.V. Riessen, Non-Cryst. Solids. 358 (15), 1830-1839 (2012).
Uwagi
1. The authors of the present work wish to acknowledge the support from the Faculty of Chemical Engineering Technology, and the Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP) for the laboratory facilities throughout the project.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a9f31b9-c795-4476-a089-5c7856eec98c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.