PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Short Heat Treatment of Amorphous Metal Alloy on Decolorization Dye Mendola Blue

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It was established that the change in the structure of the amorphous metal alloy (AMA) as a result of heat treatment of the amorphous metal alloy Al87Gd5Ni4Fe4 at T=645±1 K significantly affects the decolorization of the dye Basic Blue 6/Mendola Blue (BB6/MB) at pH=1.7±0.3. The MB solution with a concentration of 4.39 μM was decolorized by 99% within 27 hours, in the case of annealed AMAs for 30, 45, 60 min., which is 3.8 times more effective than in the case of as-cast AMAs. A change in the AMA structure due to annealing was established by X-ray analisys; kinetic analysis was performed based on experimental data and the kinetic parameters (kobs, t1/2, ksa, etc.) of the MB decolorization reaction were calculated. The surface of AMAs after reaction with aniline dye MB and the proposed scheme of decolorization of aniline dye MB using AMAs Al87Gd5Ni4Fe4 were suggested.
Rocznik
Strony
243--252
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Ivan Franko National University of Lviv, Universytetska St. 1, Lviv, 79000, Ukraine
  • University of Silesia in Katowice, Bankowa 12, 40-007 Katowice, Poland
  • University of Silesia in Katowice, Bankowa 12, 40-007 Katowice, Poland
autor
  • Ivan Franko National University of Lviv, Universytetska St. 1, Lviv, 79000, Ukraine
autor
  • University of Silesia in Katowice, Bankowa 12, 40-007 Katowice, Poland
  • University of Silesia in Katowice, Bankowa 12, 40-007 Katowice, Poland
  • Ivan Franko National University of Lviv, Universytetska St. 1, Lviv, 79000, Ukraine
Bibliografia
  • 1. Malovanyy M., Palamarchuk O., Trach I., Petruk H., Sakalova H., Soloviy Kh., Vasylinych T., Tymchuk I., Vronska N. 2020. Adsorption extraction of chromium ions (III) with the help of bentonite clays. Journal of Ecological Engineering. 21(7), 178-185. https://doi. org/10.12911/22998993/125545
  • 2. Benkhaya S., M’rabet S., Ahmed El. Harfi. 2020. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. 6(1), e03271. 10.1016/j.heliyon.2020.e03271
  • 3. Shah M. 2014. Effective treatment systems for azo dye degradation: a joint venture between physicochemical and microbiological process international. Journal of Environmental Bioremediation and Biodegradation. 2(5), 231-242. 10.12691/ijebb-2-5-4
  • 4. Kochubei V.V., Yaholnyk S.G., Kniaz S.V., Parashchuk L.Y., Malovanyy M.S. 2020. Research into the influence of activation conditions of transcarpathian clinoptilolite on its adsorption capacity. Pytania khimii i khimicheskoi tekhnologii. 4, 80-87. doi:10.32434/0321-4095-2020-131-4-80-87
  • 5. Zhang L.C., Jia Z., Lyu F., Liang S.X. , Lu J. 2019. A review of catalytic performance of metallic glasses in wastewater treatment: recent progress and prospects. Progress in Materials Science. 105, 100576. https:// doi.org/10.1016/j.pmatsci.2019.100576
  • 6. King-Thom Chun. 2016. Azo dyes and human health: A review. Journal of Environmental Science and Health. 34(4), 233-261. http://dx.doi.org/10.10 80/10590501.2016.1236602
  • 7. Ibrahim Q., Creedon L., Gharbia S. 2022. A literature review of modelling and experimental studies of water treatment by adsorption processes on nanomaterials. Membranes. 12(4), 360. https://doi.org/10.3390/ membranes12040360
  • 8. Naim M.M., El Abd Y.M. 2002. Removal and recovery of dyestuffs from dyeing wastewaters. Sep. Purif. Methods 31. 171–228.
  • 9. Dos Santos A.B., Cervantes F.J., van Lier J.B. 2007. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour. Technol. 98. 2369–2385
  • 10. Ramya M. , Karthika M. , Selvakumar R., et al. 2017. A facile and efficient single step ball milling process for synthesis of partially amorphous MgZn-Ca alloy powders for dye degradation. Journal Alloy and Compounds. 695, 185-192. http://dx.doi. org/10.1016/j.jallcom.2016.11.221
  • 11. Kochubei V., Yaholnyk S., Bets M., Malovanyy M. 2020. Use of activated clinoptilolite for direct dye-contained wastewater treatment. Chemistry and Chemical Technology, 14(3), 386-393. https://doi. org/10.23939/chcht14.03.386
  • 12. Daneshvar N., Oladegaragoze A., Djafarzadeh N. 2006. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials. 129(1-3), 116-122.10.1016/j.jhazmat.2005.08.033
  • 13. Merzouk B., Madani K., ASekki A. 2010. Using electrocoagulation–electroflotation technology to treat synthetic solution and textile wastewater, two case studies. Desalination. 250(2), 573-577. 10.1016/j.desal.2009.09.026
  • 14. Gao J., Qin T., Waclawek S., et al. 2023. The application of advanced oxidation processes (AOPs) to treat unconventional water for fit-for-purpose reuse. Current Opinion in Chemical Engineering. 42, 100974. https://doi.org/10.1016/j.coche.2023.100974
  • 15. Lopez N., Plaza S., Afkhami A., et al. 2017. Treatment of Diphenhydramine with different AOPs including photo-Fenton at circumneutral pH. Chemical Engineering Journal. 318, 112-120. https://doi. org/10.1016/j.cej.2016.05.127
  • 16. Kim S.H., Seo J., Hong Y., et al. 2023. Construction of an underwater plasma and Fenton hybrid system for the rapid oxidation of organic dyes and antibiotics. Journal of Water Process Engineering. 52, 103519. https://doi.org/10.1016/j.jwpe.2023.103519
  • 17. Martínez-Huitle C.A., Brillas E. 2009. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Applied Catalysis B: Environmental, 87(3-4), 105145. https://doi.org/10.1016/j.apcatb.2008.09.017
  • 18. Zhang C., Zhu Z., Zhang H. 2017. Mg-based amorphous alloys for decolorization of azo dyes. Results in Physics. 7, 2054-2056. https://doi.org/10.1016/j. rinp.2017.06.031
  • 19. Fan J., Guo Y, et al. 2009. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials. 166(2-3), 904-910. https://doi. org/10.1016/j.jhazmat.2008.11.091
  • 20. Chen J.W. , Zheng Z.G., Qiu Z.G. , Peng S.Y. , et l. 2020. Excellent degradation performance of the Fe78 Si11 B9 P2 metallic glass in azo dye treatment. Journal of Physics and Chemistry of Solids. 145, 109546 https://doi.org/10.1016/j.jpcs.2020.109546
  • 21. Wang Q., Yun L., Chen M., Xu D., et al. 2018. Competitive effects of structural heterogeneity and surface chemical states on catalytic efficiency of FeSiBPCu amorphous and nanocrystalline alloys ACS Applied Nano Materials. 2, 214-227. 10.1021/ acsanm.8b01669
  • 22. Liu P., Zhang J.L., Zha M.Q., Shek C.H. 2014. Synthesis of an Fe rich amorphous structure with a catalytic effect to rapidly decolorize Azo dye at room temperature. ACS Applied Materials Interfaces. 6, 5500-5505. https://doi.org/10.1021/am501014s
  • 23. Hou L., Wang Q., Fan X. 2019. Effect of Co addition on catalytic activity of FePCCu amorphous alloy for methylene blue degradation. New Journal of Chemistry. 43, 6126-6135. https://doi.org/10.1039/ C9NJ00369J
  • 24. Shi J., Ni B., Zhang J. 2019. Effect of Ni addition on catalytic performance of Fe87 Si5 B2 P3 Nb2 Cu1 amorphous alloys for degrading methylene blue dyes. 9(3), 341 doi:10.3390/met9030341
  • 25. Jia Z. , Kang J., Zhang W. 2017. Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Applied Catalysis B: Environmental. 204, 537-547. http://dx.doi.org/10.1016/j. apcatb.2016.12.001
  • 26. Lonski S., Lukowiec D., Barbusinski K. 2023. Flower-like magnetite nanoparticles with unfunctionalized surface as an efficient catalyst in photo-Fenton degradation of chemical dyes. Applied Surface Science. 638, 158127.10.1016/j.apsusc.2023.158127
  • 27. Yang J., Bian X., Bai Y. 2012. Rapid organism degradation function of Fe-based alloys in high concentration wastewater. Journal of Non-Crystalline Solids. 358 (18–19), 2571-2574. https://doi. org/10.1016/j.jnoncrysol.2012.06.002
  • 28. Chen Q., Ya, Z., Zhang H., Kim K., Wang W. 2021. Role of Nanocrystallites of Al-Based Glasses and H2O2 in Degradation Azo Dyes. Materials, 14(1), 39. https://doi.org/10.3390/ma14010039
  • 29. Zee, F.P. van der 2002. Anaerobic azo dye reduction. PhD thesis, Wageningen University. pp. 142.
  • 30. Wang P., Wang J.-Q., Li H., Yang H. Fast decolorization of azo dyes in both alkaline and acidic solutions by Al-based metallic glasses. 2017. Journal of Alloys and Compounds. 701, 759-767. http://dx.doi. org/10.1016/j.jallcom.2017.01.168
  • 31. Herzer G. 2013. Modern soft magnets: Amorphous and nanocrystalline materials. Acta Materialia. 61(3), 718734. https://doi.org/10.1016/j.actamat.2012.10.040
  • 32. Boichyshyn L., Khrushchyk Kh., Kovbuz M., et al. 2019. Specific features of the transition of amorphous Al87 REM5 Ni8 (Fe) alloys into the crystalline state under the influence of temperature. Materials Science. 55(11), 17-26. 10.1007/s11003-019-00246-7
  • 33. Young R.A. 1993. The Rietveld method. Oxford University Press.
  • 34. McCusker, L.B.; Von Dreele, R.B.; Cox, D.E.; Louër, D.; Scardi, P. Rietveld refinement guidelines. J. Appl. Crystallogr. 1999, 32, 36–50.
  • 35. Wiliamson G.K., Hall W.H. 1953. X-ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall, 1, 22-31.
  • 36. Karolus M. 2006. Applications of Rietveld refinement in Fe–B–Nb alloy structure studies. Journal of Materials Processing Technology. 175, 246-250. https://doi.org/10.1016/j.jmatprotec.2005.04.016
  • 37. Karolus M., Lągiewka E. 2004. Crystallite size and lattice strain in nanocrystalline Ni-Mo alloys studied by Rietveld refinement. Journal of Alloys and Compounds, 367, 235–238. https://doi. org/10.1016/j.jallcom.2003.08.04
  • 38. Stewart J.J. Program Package МОРАС2016 (http:// www.openmopac.net).
  • 39. Senda N. Program Package Winmostar (http:// winmostar.com).
  • 40. Kovalchuk E.P. 2005. Substance in the interphase. In: Y.P. Kovalchuk, M.M. Yatsyshyn, Y.S. Kovalyshyn (Eds.) Physical chemistry of thin films. Ivan Franko National University of Lviv Publishing Centre, pp. 242. (in Ukranian)
  • 41. Zhang C., Zhu Z., Zhang H., et al. 2012. Rapid decolorization of Acid Orange II aqueous solution by amorphous zero-valent iron. Journal of Environmental Sciences. 24(6), 1021-1026. https://doi. org/10.1016/S1001-0742(11)60894-2
  • 42. Fareed A., Zaffar H., Bilal M., J Hussain J., Jackson C., Naqvi T.A. 2022. Decolorization of azo dyes by a novel aerobic bacterial strain Bacillus cereus strain ROC. PloS one, 17(6), e0269559. 10.1371/journal. pone.0269559
  • 43. Lalnunhlimi S., Krishnaswamy V. 2016. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Brazilian Journal of Microbiology, 47(1), 39-46. https://doi.org/10.1016/j.bjm.2015.11.013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a9ea7d8-bb4e-4c15-af84-9ae125f3c912
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.