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Abstract

Almost entire fleet of steam turbines in Poland was designed between 1950-1980 with the
use of the so-called zero-dimensional (0D) calculation tools. For several years, design and mod-
ernization of the turbines occur in assistance with the state-of-the-art methods that describe
working fluid flow field based on three-dimensional (3D) models and computational fluid dy-
namics (CFD) codes. This cooperation between 0D and 3D codes requires exchange of overall,
integral information such as: power, efficiency, heat and mass fluxes. In consequence the ques-
tion arises regarding the cohesion of definitions, and particularly regarding the correctness of
the definition for internal efficiency of the turbine’s stage and the turbine as a whole. In the
present paper we formulate basic definitions reason of efficiency that are naturally adapted to
the numerical 0D and 3D models. We show that the main reason of differences between the
definitions in 0D and 3D is the definition of the theoretical work of the stage I;. In the classical
0D models, mostly employed is the isentropic approach, and hence the isentropic efficiency oc-
curs. Meanwhile, in the increasingly common 3D approach (most likely by CFD), we use more
physically correct pathway by subtracting energy loss from the available energy, that leads to
the polytropic definition of efficiency. We show an example of computing the efficiency and the
3D losses, denoted with additional subscript CFD, we also discuss benefits of this definition in
comparison with the isentropic classical definition in 0D.
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Nomenclature

0D algebraic model of flow based on integral balances of mass, momentum
and energy

3D three-dimensional model based on differential equations, that requires
complete geometry of a flow channel

CFD uniform method of simultaneously solving fluid flow governing equations
based on finite element or finite volume method discretization

A area of section, mm?

Ay blade moving area on which medium exerts action, mm?

c average velocity vector in 0D derived from momentum conservation equa-
tion, m/s

c average velocity vector length (speed), m/s

Cn normal to surface average velocity component magnitude in 0D, m/s

ct theoretical average velocity vector length, m/s

Co, C1,C2 absolute average velocity vector length at points 0, 1, 2, respectively, m/s

D diffusive stresses tensor, Pa

e, radial direction

ey circumferential direction

e, axial direction

i medium enthalpy, kJ/kg

I unit diadic; I =e, ® e, +e, e, +e.:Re;

Juv Umov-Volter mechanical energy flux, N/ms = Pam/s

Jr radial clearance, mm

Js axial clearance, mm

I theoretical unit work of a stage, kJ/kg

ls isentropic unit work of a stage, kJ/kg

lp polytropic unit work of a stage, kJ/kg

lu circumferential unit work of a stage, kJ/kg

Al; internal work losses of a stage, kJ/kg

Aly circumferential work losses of stage, kJ/kg

™m mass flow rate, mass flux, kg/s

My theoretical mass flow rate, kg/s

n unit normal vector

N mechanical power, MW

Ny circumferential power of a stage, MW

N theoretical power of a stage, MW

P pressure, MPa

P rate of pressuree change, Pa/s

Pu Puzyrewski number

P. blade drift force, N

r pitch radius, mm

r=re, radial vector, mm

R turbulent stresses tensor, Pa

s medium entropy, kJ/kg °C

T average temperature, K

T medium temperature, K
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t Cauchy stress tensor, Pa

Up =V-N —  fluid velocity normal component, m/s
u=wxr=u(r)e, — blade drift velocity vector, m/s

v —  fluid absolute velocity vector, m/s; v =u+w
w —  fluid relative velocity vector, m/s

Greek symbols

¢ — loss coefficient
n — efficiency n=1-(
w — mass flow rate coefficient
P ~  volumetric density of a medium, kg/m?
D ~  average volume density of a medium, kg/m?
T — viscous stresses tensor, Pa
T - time, s
p, Y — velocity reduction coefficients nozzle and rotor, respectively
w=we, — angular velocity vector, rpm
£ —  losses from leak, kJ/kg
Subscripts
0,1,2 — real points of process
1s,2s - points of isentropic process
1p,2p - points of politropic process
Oc,2c  — real points of process with kinetic energy
n — inlet
out - outlet
P —  politropic
s — isentropic
t —  theoretical
exp — experimental
U —  unit, circumferential
n — normal
T — rotor
s — stator
leak —  leak losses

1 Stage efficiency — classical and CFD definition

Definition for the cycle efficiency either of a heat engine or of a turbine stage, has
its origins in the work of Sadi Carnot [4,1], since which the distinction between
the heat machine power and its efficiency begins. Starting from the works by
Pambour, Zeuner, Schichau [14,26,27,12] efficiency is related to one kilogram of
working fluid, which ‘behaves’ in a better or worse way during conversion of heat
energy into mechanical energy. Carnot discoveries are still important, since they
set up a paradigm for constructing and thinking of a heat engine — by introducing
the ideal conversion of heat into work in which, in Carnot’s words, there are no
‘blank passages of the caloric’, that is, the energy conversion in the working fluid
into work occurs with conserved entropy. Then, also has a paradigm been set
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of thinking about determining the maximum allowable work to be achieved from
thermal energy of the ideal working medium, while the information of the real
working medium being nonideal, suffering from losses in its accumulated energy,
has been embraced in the Carnot coefficient, known today as efficiency (denoted
commonly with Greek letter n). The difference between an ideal medium and
a real medium that defines inevitable losses, was mathematically described with
the medium loss coefficient p.

The concepts of losses and efficiencies are essential in the process of designing
of any thermal engine also in these days. Similarly to the practice of Carnot and
other pioneers of turbine technology, the very approach in designing is still the
same — first an object for an ideal medium is designed, medium possessing no
viscosity, no thermal conductivity, no turbulence or diffusivity, etc. and then the
real gas corrections are implemented through the methods more or less correctly
chosen [5,18-20,22]. Owing to repeatedly corrected knowledge, magnitudes of the
losses attributed to all spectra of devices are anticipated today with increased
accuracy. Difficulties emerge only in the case of new constructions or in cases of
solutions required by modernization.

Carnot approach may be summarized in the following verbal rule [4]:

device amount of kilograms efficiency theoretical work
= . f 1 ]- f 1
(power) <0f medium per second> obarea o one (1)
conversion kilogram

or mathematically (employing notations by Szewalski [20])
N =1l , (2)

where N is the mechanical power, 1 is the real mass flow rate, 7 is the efficiency
of the stage and [; is the theoretical unit work of a stage.

Theoretical work of the turbine stage or the entire turbine achieved from a
unit mass of the medium was denoted with subscript ¢, that stands for ‘theo-
retical’ and indicates an ideal conversion of available energy of steam [5,18,21].
Equation (2) reflects the character of the traditional approach to designing first
the thermodynamic cycle which is being designed for 1 kg of an ideal working
fluid, next the resulting work is decreased by the factor of the efficiency of the
real working fluid and, to acquire the desired power, it is then multiplied by the
resultant amount of working fluid kilograms to perform the work. Efficiency, 7,
is an empirical parameter, known a priori for similar devices. However, deriving
the magnitude of cross-sections to possess the required mass flow rate, m, is per-
formed based on the theoretical mass flow rate, 7, to be 1 = ur:, where mass
flow coefficient, u, is to restrict the value (coefficient) of the theoretical mass flow
rate accordingly to the real velocity profile.
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In accordance with the current computational tools possibilities based on the
three-dimensional (3D) modeling, natural question occurs on the agreement be-
tween the computational fluid dynamics (CFD) and the classical line of reasoning
in traditional design workflow. The question is if concepts such as efficiency or
losses may be strictly defined in the 3D approach, in other words — are these
concepts general, independent on the tool being used. In the following sections
we propose consistent definitions for efficiency and losses, to allow for transform-
ing computed integral quantities received from 3D models into zero-dimensional
(0D) codes.

2 Geometry of the stage and its parameters common
with 0D model
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Figure 1. Geometry of an axial impulse stage of a turbine with working medium parameters
written for pitch radius, where: 1o — the mass flow rate of the steam flown in point
0, s — the mass flow rate of the steam flown through stator diaphragm channel, 7,
— the mass flow rate of the steam flown through the rotor stage channel, 1mjeqr — mass
flow rate of the steam flown through the leak, p — pressure, ¢ — absolute averaged
velocity vector length, J, — radial clearance, J, — axial clearance, r — pitch radius.

Figure 1 presents the classical scheme of the impulse stage in an axial turbine.
It comprises stator diaphragm (subsonic nozzles) and the rotor wheel. It has
very easy to define geometrical parameters (3D), such as pitch radius, r, axial
clearance, J,, radial clearance J,.. In 0D modelling it is assumed, that the steam
parameters (p,c) are averaged in sections, are given at pitch radius, and are
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denoted — accordingly to tradition initiated by the pioneers and the masters of
turbine technology — by 0,1,2, respectively. In a 0D model no information on the
geometry or fluid parameters on the segment 0-1 and 1-2 is provided; nonetheless
it is tacitly assumed, that those change linearly.

3 Mass flow rate

The question on the mass flow rate of the stage, or the entire turbine, is fun-
damental for determination of its performance and working parameters. It is
important to remember, that the turbine is a device that serves for energy con-
version of the working medium internal energy into mechanical work, which is
then received at the moving surfaces. For example, that internal energy of the
working (fluidic) medium first needs to be converted into kinetic energy in the
expansion device called the nozzle, and then is forwarded and absorbed at the
moving surfaces of the rotor blades. Thus, differently from reciprocating engines,
where working medium is at some temporal instance at relative rest, in the axial
and radial turbines it is constantly flowing through the device. Mathematically it
is the mass flow rate ri. The overdot, according to Rankine’s proposal, means the
material time derivative of mass — it is consistent with the material velocity (in
the Lagrange sense) of the volumetric mass density, p, found in 3D models [2]|. In
other words, energy conversion occurs in the medium flow through an expansive
device (nozzle, guide vanes) and a mechanical device (rotor).

To enforce the constant mass flow rate, m = const, of the medium through
the stage passage and its clearances a constant pressure difference between inlet
and outlet stages needs to be sustained, i.e., between p;, and p,,;. Parameters
denoted by CFD 1, p, v, T, subscripts ¢n and out may be also determined at
points 0 and 2 (Fig. 1), respectively. For the entire turbine we usually know both
pressures, as the pressure of the life steam, and the pressure in the condenser or
extraction point, and is identified with the measured static pressure. Usually it
is assumed, that these pressures are constant in the measurement cross sectional
area, which allows to identify the pressures measured at the wall (or inside an
insulation) with the 0D model pressure. The assumption on equal pressure across
the characteristic cross sectional area is not made in CFD modelling, we however
agree, that energetically weighted pressure of the medium in the cross section in
question should be identical to the 0D pressure. This assumption relates to the
averaged CFD pressure be equal to the measured pressure. The three-dimensional
CFD model allows for ‘reading’ the value of the pressure precisely at the mea-
surement point. It is possible now to explain the difference between the 0D and
measured pressures those differences are significant and may reach even up to
0.2 MPa [3].
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Other basic differences between 0D and 3D models need reminding. Firstly,
the given pressure drop, Ap = pin — Pout, propelling the flow, is used in an
ultimately different manner in the classical 0D approach compared with the nu-
merical 3D approach. In 0D, the given pressure drop results in enthalpy drop of
the medium, which induces some kinetic energy, for the sake of energy conversion
principle to be met. From the kinetic energy, velocity vector length is established,
denoted with cyye. Let it be recalled that in an ordinary converging channel, where
heating and working diminish the energy equation per one kilogram of a working
medium has a 0D form [11,13,25]

2 2
. C; . C
%'n(pinv En) + 22n = lout (pouta Tout) + o2ut . (3)

This equation allows the outlet velocity vector length to be determined [11,13]

Cout = \/Q(Zzn - Z.out) + C?n . (4)

Equation (4) is readily used by measurement engineers, since it only requires
measured pressures and temperatures at both channel inlet and outlet, so that
tabularized equations of state could provide enthalpies i;, and i,,:. The energy
equation (3) is correct during compression as well as during expansion [8]. Average
velocity vector length c,,+ energetically averaged, is slightly higher from the vector
length derived from momentum conservation equation and averaged with respect
to momentum, and hence oyt > [Cout| [2].

In 0D computation practice determination of enthalpy i, for the real flow
is impossible to be made directly, since the temperature T,,; is unknown. Hence
calculations are based on a hypothetical quantity, governing entire further design
process — it is the ideal velocity, in the literature known as ‘theoretical’ velocity
[5,18], which is computed from a different enthalpy drop from the real one oc-
curring in Eq. (4). Rejecting quantities unable to establish readily, such as heat
escape from steam through channel walls, turbulent heat transfer along the chan-
nel between its inlet and outlet, turbulent momentum transport, frictional resis-
tance against channel’s walls, friction between fluid streams, etc., finally a picture
emerges of a ‘theoretical’ enthalpy value iy, of such an ideally elastic (reversible)
conversion.

Certain approximation of ideal enthalpy value is an enthalpy mostly employed
in 0D models, defined to be the enthalpy of an isentropic conversion (expansion,
compression); it is calculated with the use of equations of state

Z'out,s = iout,t(pout’ sin) . (5)

Here, ideal conversion is enforced by the assumption, that it processes in the en-
tire channel with a constant entropy value of the medium s;, = S, = const.
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It is distinguished from others by adding the subscript s. It is hence excessively
stiffening the condition for conversion — entropy of the medium flowing through
the channel changes anyway, both through elastic conversion described with equa-
tions of state and through internal sources ‘producing entropy’, originating from
the above described processes.

Another theoretical enthalpy is the enthalpy, which value evolves only as a re-
sult of any arbitrary change in equations of state, while the changes from irre-
versible processes are rejected due to the fluid being assumed ideal. The definition
is then

iout,p = iout,t(pouta Sout,p) . (6)

Throughout the paper it will be called enthalpy of ideal polytropic process (it
is distinguished from others by adding the subscript p), entropy for which is
computed with neglecting any irreversible phenomena in the flow.

The real velocity ¢,y of the steam leaving the nozzle is lower than the the-
oretical velocity coyut ¢, regardless enthalpy definition employed, either isentropic
Eq. (5) or polytropic Eq. (6). In both cases, same losses decrease the velocity,
that is the friction between the molecules and the vessel walls. The only measure
for practical estimation of those ‘discrepancies from the thought (referential) ide-
ality’ (these are not losses per se in any case) is the assumed in the 0D model, and
calculated in a 3D model, velocity reduction coefficient, denoted in literature by
¢ (nozzles, guide vanes) or ¢ (rotors). In this case the real length of the velocity
vector (direction still remains unknown) acquired from the energy conservation
equation satisfaction condition is:

Cout = PCout,t - (7)

First empirical research on determining the ¢ coefficient were conducted by
Christlein, Fluggel, Stodola, Brown and Boveri [5,18]. Its values depend strongly
on the ideal velocity and arrange themselves in the so called nozzle characteristic
@ = 0.95, 0.968 at 400 and 800 m/s, respectively. Deviation from the ideality
(hypothetical losses) of kinetic energy are determined by the loss coefficient ¢ =
1 — 2 [14].

Owing to the fact, that in 0D model most accurately is computed the theo-
retical velocity, it is easier to formulate the theoretical mass flow rate than the
real mass flow rate. Hence, the real mass flow rate, which according to the ve-
locity profile is always lower, may be described with the empirical mass flow rate
coefficient p:

m = pumy . (8)

In the 0D modelling practice, mass flow rate coefficient determination bases on
computing the theoretical mass flow rate, 1m;, and measuring the real mass flow
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rate, m = Megp,
mea}p
HoD = — : (9)
m¢ oD

An opposite situation is the case in 3D modeling CFD — the real mass flow rate
is accurately computed, and interpretational difficulties arise with the theoretical
one. When both mass flow rates are computed with the use of the same numerical
tables of state, for the polytropic change of state, the mass flow rate coefficient
may be determined for each turbine stage or the entire turbine as

MorD

; . 10
m¢CFD ( )

HCFD =
The popp coefficient is slightly smaller than pgp, nonetheless, for design purposes
it may be assumed that puop = pucrp-

It requires noting, that the mass flux computed in CFD is the basic integral
parameter of the 3D flow, which is controlled during the numerical process — it
is possible to be read in any section, A, (not necessarily planar) of a turbine flow
domain, oriented with a normal vector, n, as [2]

MCFD = // pupdA = // pv -ndA | (11)
A A

where the normal to surface velocity component magnitude, v, occurs, not the
entire magnitude of the vector. Transition to the 0D model is as follows [2,16]:

. JJ4 pdA [[, pvadA
on = / R NINE

where p, p are the averrage volume and volume density of a medium respectively,
and ¢; is the theoretical average velocity vector length, ¢, is the normal to surface
velocity component magnitude in 0D.

The flow coefficient depends on both the fact, that the average velocity, ¢ =
pce, determines the constant velocity profile within the section, and that its value
and the direction of the averaged vector c¢ is unknown, that enforces assuming
chn=c-n=c|2]".

= Apc, = Appopct = [opMi oD , (12)

4 Power of the stage

Recall, that the fundamental task ahead of a working medium is its contribution
in the process of energy conversion from thermal to mechanical either in the
form of fluid storing energy at one place and then transferring this energy into

'Full discussion of this problem one can find in monograph [2]
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another place, or in the form of (ideal) converter of energy forms. Mathematically,
mechanical energy flux, expressed by the working medium parameters, is defined
by the Umov-Volterra energy flux [2] Jyy = tv, that is the product of momentum
flux tensor, t (known as the Cauchy stress tensor) and the material velocity
vector of the fluid v. It is a sufficiently general definition embracing turbulent,
diffusive and thermal stresses. Mechanical power received through the Umov-
Volterra energy flux on a moving surface of a blade A,, oriented with a normal
vector, n, is (Badur [1,2])

Nu,CFD = // Jyv -ndA = // tv-ndA . (13)
Ay Ay

Here, t = —pI+ 7+ R+ D +... is a symmetric tensor of entire momentum flux,
comprising, respectively, elastic pressure tensor, traceless viscous stress tensor,
Reynolds turbulent stress tensor, diffusive stress tensor, rarely employed with
respect to working fluids (e.g., radiation stress tensor in gas turbines) and other.
In CFD models of fluids without velocity slip on a wall, fluid velocity, v, used in
Eq. (13) is equal to velocity, u, of the moving surfaces (Badur [1,2]).

Even though the N, crp is included in the energy equation, in CFD compu-
tation is determined entirely and solely from the momentum balance equation.
Thus, in case of the fluid tensor model, limited only to the elastic Euler fluid, i.e.,
t = —pl, where pressure is computed from a polytropic process. It be expected,
that the circumferential power for the Euler fluid, say N, tcrp, would be far
greater than the power acquired for a viscous, turbulent and nonadiabatic fluid,
Eq. (13)

Nutcrp > Nucrp - (14)

Note, that computation of the circumferential power in the 0D model, based on
the 0D momentum balance, has a similar character as in Eq. (13); it is the product
of the average force in the circumferential direction, P,, and the u velocity.

Summarizing, the definition of the power of stage is defined differently, de-
pending on the stage of the design process (Szewalski [20], Perycz [15], Badur
[1,2], Puzyrewski [16], Kosowski [9,10])

My (Lin — Tout), 0D design without any geometry,
Ny=<¢ Py -u, 0D verification with designed geometry,

Jf4, (=PI + T +R)n-udA, 3D verification with exact geometry.
(15)
Recall, that m, stands for the mass flow rate of the steam flown through rotor
stage channel (hence the r subscript), 4, iyt are the enthalpies of the steam
at the inlet, and outlet of the stage, respectively (averaged in the 0D sense),
P, = 1, (¢in — Cout)€y is the circumferential force at the rotor. Surface integral in
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(15), including all blades of the rotor stage, is computed as an average work of the
pressure p and the surface tensile forces 7 on the variable over the blade height
velocity u = u(r)e, (Fig. 2). Unit vector n is the normal vector of the blade
surface, and it generally changes significantly over the blade’s circumference, but
since 3D blades are employed, vector n also changes over the blade’s height. The
above definitions of the stage power are equivalent. Equivalence of the Eqs. (15);
and (15)y is shown in [11,16]. Transition from Eq. (15)3 to (15)y is also often
proved qualitatively and quantitatively [2,16].

Figure 2. Illustration of the computation of the rotor stage power with use of momentum
conservation equation, where: r = re, — radial vector, P, — blade drift force,
u=w X r = u(r)e, — blade drift velocity, n — unit normal vector.

In the case of a turbine being designed, for which neither the geometry nor the
cross-sections of the blade channel are known, the power of a stage is computed
based on energy balance equation (15); and a given theoretical pressure drop
(theoretical power) or a given, measured, enthalpy drop (measured real power).
The real power in the 0D model is acquired by employing the 0D momentum
balance equation, which is based on over-stiffened idealization, that is isentropic
expansion [5,18,22], and its accuracy depends on determination of free parameters
of the Puzyrewski model [16]:

® oy, 0.0 — angles orienting velocity vector ¢y — considering length of the
vector ¢y should be consistent with the mass flow rate, m; only two angles
orienting this vector may be independent unknowns of a 0D model,;

e velocity coefficient for stator and rotor, ¢ and @, respectively;

e mass flow rate coefficient, p.
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In practice comparison of the real powers computed in 0D and 3D model is a very
delicate matter. In the 0D model there are four free parameters, that are deter-
mined through empirical closures, verified inside the construction offices of the
modern turbine factories. In the 3D approach, the number of free parameters is
several times greater — the designer may improperly pick one of those with an
error, in consequence, far greater than in the standard calibrated 0D model.

5 Circumferential work of the stage

The basic quantity for comparison of thermodynamic quality of the projected
stage is the unit work on the stages circumference, that is, the work received from
unit of mass of a working medium [11,13,15]

Ny
ly=—". 16
u mr ( )
Only the mass flow rate flowing through the blading passage is taken into account,
omitting the flow through clearances; m, = 1 — mjcqk,r. Circumferential power
N, may be computed or measured, hence the definitions (16) have fundamental

character.
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Figure 3. Geometrical depiction of the energy balances in the turbine stage presented in the i-s
diagram, where: 0,1,2 — real points of process; 1s,2s — points of isentropic process;
1p,2p — points of politropic process; Oc,2c — points of process with kinetic energy; I, —
circumferential unit work of a stage; s — isentropic unit work of a stage; [, — polytropic
unit work of a stage; Ais — losses of the stator diaphragm channel; Ai, — losses of the
rotor channel; Aigyt = lc% — outlet loss connected with the unused kinetic energy of

2
the fluid; %cg kinetic energy of the fluid in point 0.

In Fig. 3 visualization of both theoretical process (isentropic and politropic)
compared to real process with geometrical description of the energy balances in
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the turbine stage. In this figure enthalpies: isentropic iz s = iout,s, and polytropic
12.p = lout,p Calculated for a single turbine stage is to be find.

6 Theoretical circumferential work

Theoretical unit work on the circumference, say l;, is computed similarly to the
real circumferential work [,,, as a ratio of theoretical power to theoretical mass

flow rate
Nu,t

Myt
Depending on the employed model, ideal work becomes either isentropic (0D) or
polytropic (3D, CFD). In the 0D model, theoretical circumferential unit work is
computed from the Eq. (15)1, with the difference of considering isentropic expan-
sion for a change, where ioys = iout,s (Fig. 3). Thus, subscripts t = s are identified
and there is:

I . Nu,s
s,0D — .

(18)

T,8
In the 3D model, computation of NV, ; and 7, ; bases on CFD numerical analysis
of the Eulerian elastic fluid and polytropic numerical quantities of tables of state,
SO Gout = tout,p (Fig. 3). Therefore t = p

lpcFD = Nu’p : (19)
M p
Many works accomplished at the Energy Conversion Department IFFM PAS?
show, that the results always satisfy the condition l, crp > l,,crp Wwhich means,
that the unit work of the ideal fluid is greater than the unit work of the real
fluid. This comes from the fact, that the ideal fluid (Eulerian) does not possess
turbulence, viscosity and shear stresses.

7 Circumferential stage efficiency

In agreement with the Carnot paradigm, the ratio of the circumferential unit
work to the theoretical circumferential work, [;, is called the stage circumferential
efficiency [11,15]:
nu:l_uzl_%zl_Cu<1a (20)
ly ly
where Al, = l; — I, |kJ/kg| and (, are the circumferential losses comes from
resistance and include blade losses extended by the outlet loss (Fig. 3) and cir-

cumferential losses coefficient, respectively.

2References for these works one can find in ‘Annual Reports of IFFM PAS’ in years 1995-2012
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It may be defined correctly both in the sense of 0D and 3D approximations. The
real work can be related to some idealized situation process, where hypothetical
losses Al, occur. For example in 0D codes such idealized process is the isentropic
expansion process, on the other hand in 3D (CFD) codes this idealized process
is the polytropic expansion. This paradigm of thinking originates from traditions
in European teaching, that relates themselves to Platon’s world of perfection,
and where disciples are directed to strive for perfection. Contemporarily it is
understood that the losses ¢ are merely a mathematical manipulation employing
easy to compute referential point. In other words, the ideal work is only a useful
fiction that cannot be measured by any means.

Quantity Al, occurs in Eq. (20), falsely called in literature [3,16] circumferen-
tial losses, comes from the flow resistance resulting from molecular (material) and
operational (turbulent) viscosity and includes blade losses. In case of the presence
of the following stages, losses need to be extended by the outlet loss connected
with the unused kinetic energy of the fluid. It is proposed, for clarity, to use the
notion 7,,crp in case of losses or efficiencies computed in the CFD methodology.

8 Internal efficiency of the stage

Extremely important is the definition of internal efficiency of the stage — let it
be denoted with 7, crpp. It includes all non-blade losses, in this particular case in
form of shroud leaks. Hence, instead of the equation employed in 0D modelling:
l; = Iy — Al;, where Al; denotes losses of the stage extended by the outlet loss
along with non-blade losses from leaks, a more primal definition of internal unit

stage work may be used: N
u
l; = gl (21)
where power (N, = V) is related to the entire mass flow rate flowing through the
stage, not only to the mass flux over the blading passages: 1 = 1ivs + Myeqk,s =
My + Myeqk,r, Where 1, — mass flow rate of the steam flown through the stator
diaphragm channel, 7, — mass flow rate of the steam flown through rotor chan-
nel and 71eqr,s — mass flow rate of steam flown through the leak of the stator
diaphragm (guide diaphragm) channel, 17¢qr, — mass flow rate of steam flown
through the leak of the rotor channel, respectively. Since leaks are always greater
than zero, l; crFp < ly,crp. Similarly, theoretical unit work may be computed:
Nu,t

I, = =%t (22)
my

Difference acquired in the CFD between the real power, N,, and the theoretical
power, N, ¢, may serve for determination of work losses Al;, which, on the other
hand, are empirically determined in the classical 0D model [21,22].
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Internal (casing) efficiency of the stage is defined as a ratio of internal stage
work to the ideal stage work (Perycz [15], p. 33, Eq. 1.28)

L LA AL
el e L

(23)

where All = lt — ll

Depending on the model employed, two situations may result — 0D model,
if the over constrained isentropic expansion is assumed, ¢t = s or 3D model, if
the polytropic expansion is assumed, ¢ = p. Let it be recalled, that in the 0D
model, internal stage losses comprise enthalpy losses of the stage along with the
non-blade losses from leaks [17,19]

Alz’,OD = Ais + Air + Aiout + 52 + §r ; (24)

where Aig, Ai, and Ai,y, are the losses of the stator diaphragm channel, losses of
the rotor channel and Aiy,; = %c% outlet loss connected with the unused kinetic
energy of the fluid, respectively, and here &, are the losses from axial leaks between
the hub and the guide diaphragm, &, are the radial losses between the blade tip
and the casing. Numerous equations available in literature for particular losses
may be easily found [11,15,22].

On the contrary, 3D model losses Al; crp may not be separated and attached
to particular processes, and are usually given aggregately:

1. .
Aljcrp = ——(MNyy — 1y Ny,) . (25)
mym

9 Example — CFD efficiency of the control stage

Figures 4-8 contain an illustration to the N, crp, Nutcrp, li,crp, lt.cFD, Mi,cFD
definitions in the CFD given by equation 13, 14, 21, 22, 23. Ny crp, NutcFD,
licrp, lt,crp, Mi,crp, Cicrp are computed for the control (impulse) stage of
a 100 MW steam turbine [3]. The CFD calculation assumes that: the stage is
fed with steam through four nozzle boxes, of which one is opened in 80% of its
mass flow rate. In this case of calculation, the guide diaphragm leak is absent
Myeak,s = 0, while there appear losses from uneven feeds. The 3D model does not
require any particularly special approach.

All calculations were performed for the same pressure drop equal to p;, —
Pout = 2.402 MPa. The inlet pressure was preserved constant at the level of
Pin = 9.445 MPa, and the fresh steam fed into the turbine had the temperature
T;, = 811.15 K. Numerical analysis included axial clearances J, = 2, 3, 9, 13 mm,

and radial clearances J, = 2, 9, 14 mm?3.

*These higher values of clearances follows from untypical strength condition for high rotating
blade foot, see [3].
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Figures 4 and 5 present stage real power N, crp and power aquired for Euler
fluid Ny crp, respectively.
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Figure 4. Power, N, crp, of the control stage as a function of clearances.
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Figure 5. Circumferential power for the Euler fluid N, :crp, of the ideal control stage as a
function of clearances.

Figures 6 and 7 show internal unit work /; crpp and the theoretical unit work
lt,crp, respectively. The casing (internal) efficiency of the stage 1, cpp and the
losses (;,crp are shown in Figs. 8 and 9, respectively. It concludes, that casing
efficiency in CFD varies between 0.88 and (.81, which is correct according to the
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practical knowledge of this particular turbine’s element. From the results given in
Tab. 1 it concludes that the coefficient pcpp for the impulse control stage changes
according to the axial clearance J, and radial clearance J,., and, for instance, is
uworp = 0.92 for J, = 2 mm and J, = 3 mm.
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Figure 6. Internal unit work, l;, crp, in the control stage as a function of clearances.
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Figure 7. Theoretical unit work, I, crp, in the control stage as a function of clearances.
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Figure 8. Control stage efficiency n; crp as a function of clearances.
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Figure 9. Control stage losses (;,crp as a function of clearances.

10 Isentropic and polytropic efficiency

To explain differences between isentropic and polytropic efficiencies, it is comfort-
able to consider this aspect apart from the turbine stage, and look at it in a wider
perspective. For this purpose let’s consider efficiency in flow, where no heated
and cooled or moving surfaces occur. It should be pointed out, that the flow
efficiency is connected with the general concept of the ratio of utilization of the
energy stored, carried by the unit of mass of a working medium; it describes the
relation of real enthalpy, ¢, change of the medium to some reference (theoretical)
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Table 1. Mass flow rate of the axial control stage for a given pressure drop pin — pour = 2.402
MPa, pin = 9.445 MPa, T;,, = 811.15 K, revolution speed 10400 rpm.

Radial clearance J, [mm)]
Mass flow 9 | 9 | 14

rate [kg/s|

Axial clearance J. [mm)]
2| 4] of 13] 2| 4] o] 13] 2| 4] o] 13

m 90.2190.3190.3 |88.7190.4191.191.2 190.4 {90.4|91.5 [91.190.4
Real Miecak,r 49| 64| 77| 83| 6.5[14.4(19.6|24.0| 6.5|15.8{22.6|29.3
my 85.3183.982.6 (80.4|83.9|76.7|71.7|66.4|83.9|75.6 | 68.5|61.1
my 91.6 [91.7191.6 |90.0{91.8 |{92.292.3 (91.2]91.5|92.3|91.8 | 91.1

Ideal | 15y, 10k | 5.0| 6.2] 7.6| 8.1| 6.7[13.5(18.3|22.3| 6.8|14.4|20.4[26.2

Mg, T 86.6185.5|84.0(81.9(85.1|78.7|74.0|68.9|84.7|77.9|71.5|64.9

change of energy, e, of the medium, which mathematically is

fT,out idr . .
e = T,in _ Lin — lout (26)
¢ f;flute(s,v)dT f;;ZUte(s,U)dT ’

where e(s,v) may be an internal energy, free energy, free enthalpy or any other
energy expressing elastic properties of the fluid depends from entropy destruction
s, and volume change v in the time from start of the process 7;, to the end of
process Tout, and 7 is the time of process.

Classical isentropic efficiency, ns, of the flow, computed in 0D modelling, em-
ploys the isentropic drop of enthalpy [5,7,14]| (Sin = S0 = S2s = Sout,s) (Fig. 3)

ns = .Zin — lout ) (27)

Lin — lout,s

This definition is practical for the 0D model, since it is related to the ideal state
described by enthalpy 74, s — it is easily interpreted in the Molier i-s chart (Fig. 3)
and does not require the temperature, Ty, to be known. However, the definition
for the isentropic efficiency does not have a solid physical fundamentals, since the
Process i, — lout,s Mmay not be acquired in the real fluid flow [23]. On the other
hand, the polytropic definition also does not require the temperature Ty, to be
known initially; energy dissipation intensity is calculated in the 3D model solely
for the real process, 4;, — iout, Or in the case of Eulerian fluid for available
energy drops to zero — the process becomes polytropic, 4, — iout,p- Hence, in the
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3D modelling based in CFD methodology, the polytropic efficiency definition is

Nu,C’FD _ ffA pI+T+R)n udA (Zzn _iout)m
Nu,tC’FD ffA pIn udA (Zzn - Z.out,p)mt .

Np,CFD = (28)

However as proposed by R. Puzyrewski [16, p.51] for 0D approach polytropic
efficiency 7, 0p seems more natural than n, and is definited

G
Mlp,0D = frfmt 10ud (29)

T,in p

where p is the rate of pressure change, that is valid for any channel geometry,
both convergent and divergent.

From Eq. (29) it concludes, that the difference between isentropic efficiency,
1s, and polytropic efficiency, 1, op, lies in a different referential state theoretical
for the energy drop [16,6,7]. In Puzyrewski monograph [16,p.53] evaluation of the
difference is found

Tin—out — Tout,s—
= o (14 ¢, T~ Tontaco ) (30)

out,s—out

where the over bar denotes averaged temperature of the thermodynamic process
(Fig. 3) and (s = 1 — n, is isentropic loss. From Eq. (30) it reads that both
efficiencies are close to one another by their values, if [16]

Ns = (1 + Pu)np,OD ) (31)

where Pu is the Puzyrewski number.
On the other hand for CFD we can write

ns = (1 —=Pu)ny.crp - (32)

For both cases Pu can be written as

ﬁn—ou
Pu:<7t—1>g“sz0. (33)

out,s—out

For turbine stages Pu varies from 0.002 to 0.0001, what in practice means, that the
computed polytropic efficiency 1, crp is by 0.2 to 0.01% higher from the isentropic
efficiency 7. It is closely enough to justify the assumption 750p = 9, crpD-
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11 Conclusion

Internal (casing) efficiency of the stage and the entire turbine is the basic crite-
rion in estimating machine perfection, which the manufacturer guarantees before
the very first start-up. Since the efforts of the designer to achieve the highest
possible efficiency a natural question arises for the integrity of efficiencies derived
from the two methods, namely 0D and 3D. Intuitively it seems, that 3D models
are able to better (more accurately) determine the flow parameters and hence
its efficiency. In the paper the task of comparing the definitions for efficiency in
0D and 3D was undertaken. It turns out that both definitions, aside from real
power estimation accuracy, differ substantially in case of establishing the refer-
ential theoretical powers, to which the real power is then related. Therefore it is
appropriate to speak of polytropic CFD efficiency and isentropic 0D efficiency as
quantities different in the very definitions. Both discussed definitions of efficien-
cies give similar results differing by the term specified by the Puzyrewski equation
(33). If the number Pu — 0, then identity ow both definitions occurs and we may
write 750D = Np,cFD-

In the future, if the procedures for checking the new turbine designs and
modernisations of old turbines will require CFD analyses as a standard, classical
efficiencies 7, 0p, burdened with simplifications of the 0D approach, should be
replaced with the CFD efficiency, 1, crp, and thus it would become the definition
of efficiency to use when defining turbine technical parameters. It is also attractive
from the commercial point of view, since the CFD efficiency is, by definition being
polytropic, higher than the 0D isentropic efficiency.
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