PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment Efficiency and Characteristics of Biomass in a Full-Scale Wastewater Treatment Plant with Aerobic Granular Sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, studies have been carried out on an implementation of aerobic granular sludge (AGS) technology in full-scale wastewater treatment plants. The aim of the work was to evaluate the effectiveness of organic, phosphorus and nitrogen compounds removal from municipal wastewater and to characterize the biomass in a wastewater treatment plant upgraded from the activated sludge to AGS technology. In the upgraded facility, granulation was obtained quickly and it was observed that the granule morphology depended of the temperature. In the granular biomass harvested at moderate temperatures in the reactor (15°C), the granules with diameters in the range from 125 to 500 μm constituted the largest share (about 60%), while the second-largest biomass fraction comprised the granules with diameters over 1 mm (25%). The analysis of granule diameters carried out in winter (the temperature in the reactor equaled 8°C) showed a decrease in the share of the largest granules and predominance of the granules with diameters in the range from 90 to 355 μm (about 75%). Upgrading the municipal wastewater treatment plant from activated sludge to aerobic granular sludge significantly improved the settling properties of the biomass and efficiency of wastewater treatment. The average efficiency chemical oxygen demand (COD) and phosphorus removal increased by about 10% and 20%, respectively, while ammonium nitrogen was completely oxidized, regardless of the season. After modernization, the concentration of nitrates in the effluent increased significantly to about 3-6 mg/L. The results of the study show that it is possible to effectively upgrade the existing facilities to aerobic granular sludge technology; it was also proven that this technology is an excellent alternative to a conventional activated sludge.
Rocznik
Strony
95--102
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
autor
  • University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
autor
  • University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
autor
  • University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
Bibliografia
  • 1. Adav S.S., Lee D.J., Show K.Y., Tay J.H. 2008. Aerobic granular sludge: recent advances. Biotechnology Advances, 26, 411-423.
  • 2. APHA Standard Methods for the Examination of Water and Wastewater (1992). 18th edn. APHA, AWWA and WEF, Washington.
  • 3. Bao R., Yu S., Shi W., Zhang X., Wang Y. 2009. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature. Journal of Hazardous Materials, 168, 1334-1340.
  • 4. Bitton G. 2005. Wastewater Microbiology. A John Wiley & Sons, Inc. Publication, 225-235.
  • 5. Cydzik-Kwiatkowska A. 2014. Zastosowanie oraz perspektywy rozwoju technologii granulacji tlenowej w oczyszczaniu ścieków. Inżynieria Ekologiczna, 38, 156-166.
  • 6. Cydzik-Kwiatkowska A., Białowiec A., Wojnowska-Baryła I., Smoczyński L. 2009. Characteristic of granulated activated sludge fed with glycerin fraction from biodiesel production. Archives of Environmental Protection, 35, 41-52.
  • 7. Cydzik-Kwiatkowska A., Zielińska M. Technologia osadu granulowanego w oczyszczaniu ścieków, in: Trendy w biotechnologii środowiskowej, Ed. Wojnowska-Baryła I., Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego, Olsztyn 2011.
  • 8. de Kreuk M.K. 2006. Aerobic granular sludge: scaling up a new technology. Delft University of Technology, Delft (PhD thesis).
  • 9. de Kreuk M.K., McSwain B.S., Bathe S., Tay J., Schwarzenbeck S.T.L., Wilderer P.A. 2005a. Discussion outcomes. Ede. In: Aerobic granular sludge, water and environmental management series. Munich: IWA Publishing, 165-169.
  • 10. de Kreuk M.K., Pronk M., van Loosdrecht M.C. 2005b. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Research, 39(18), 4476-4484.
  • 11. Giesen A., de Bruin L.M.M., Niermans R.P., van der Roest H.F. 2013. Advancements in the application of aerobic granular biomass technology for sustainable treatment of wastewater. Water Practice Technology, 8(1), 47-54.
  • 12. Kotowska M., Zakrzewska-Czerwińska J. 2010. Kurs szybkiego czytania DNA – nowoczesne techniki sekwencjonowania. Biotechnologia, 4, 24-38.
  • 13. Liu B., Zang F., Feng X., Liu Y., Yan X., Zhang X., Wang L., Zhao L. 2006. Thauera and Azoarcus as functionally important genera in a denitriyfing quinoline-removal bioreactor as revealed by microbial community structure comparsion. FEMS Microbiology Ecology, 55, 274-286.
  • 14. Li J., Ding L.B., Cai A., Huang G.X., Horn H. 2014. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor. Hindawi Publishing Corporation, Article ID 268789.
  • 15. Liu Y., Tay J.H. 2004. State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 22, 533-563.
  • 16. Muszyński A., Załęska-Radziwiłł M. 2015. Polyphosphate accumulating organisms in treatment plants with different wastewater composition. Architecture Civil Engineering Environment, 4, 99-106.
  • 17. Podlasek M., Gudecki M., Cydzik-Kwiatkowska A. 2017. Technologia granul tlenowych alternatywą dla oczyszczalni ścieków. Przegląd komunalny, 2, 48-49.
  • 18. Pronk M., de Kreuk M.K., de Bruin B., Kamminga P., Kleerebezem R., van Loosdrecht M.C.M. 2015. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Research, 84, 207-217.
  • 19. Sławiński J. 2015. Tlenowy granulowany osad czynny. Gaz, Woda i Technika Sanitarna, 9, 342-344.
  • 20. Świątczak P., Cydzik-Kwiatkowska A. 2017. Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant. Environmental Science and Pollution Research, doi: 10.1007/s11356–017–0615–9.
  • 21. Tarczewska T.M. 1997. Biotyczne i abiotyczne uwarunkowania pęcznienia osadu czynnego. Ochrona środowiska, 65, 29-32.
  • 22. Tay S.T.L., Ivanov V., Yi S., Zhuang W.Q., Tay J.H. 2002. Presence of anaerobic Bacteroides in aerobically grown microbial granules. Microbial Ecology, 44, 278-285.
  • 23. Toh S.K., Tay J.H., Moy B.Y.P., Tay S.T.L. 2003. Size-effect on the physical characteristics of the aerobic granule in a SBR. Applied Microbiol and Biotechnology, 60, 687-695.
  • 24. van der Roest H.F., de Bruin L.M.M., Gademan G., Coelho F. 2011. Towards sustainable waste water treatment with Dutch Nereda® technology. Water Practice and Technology, 6(3).
  • 25. Wu B., Li Y., Lim W., Lee S.L., Guo Q., Fane A.G., Liu Y. 2016. Single-stage versus two-stage anaerobic fluidized bed bioreactors in treating municipal wastewater: Performance, foulant characteristics, and microbial community. Chemosphere, 171, 158-167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a9a004d-b7bc-4917-9bfa-2717a0ed1064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.