Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Deep learning methods, used in machine vision challenges, often face the problem of the amount and quality of data. To address this issue, we investigate the transfer learning method. In this study, we briefly describe the idea and introduce two main strategies of transfer learning. We also present the widely-used neural network models, that in recent years performed best in ImageNet classification challenges. Furthermore, we shortly describe three different experiments from computer vision field, that confirm the developed algorithms ability to classify images with overall accuracy 87.2-95%. Achieved numbers are state-of-the-art results in melanoma thick- ness prediction, anomaly detection and Clostridium difficile cytotoxicity classification problems
Rocznik
Tom
Strony
179--193
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Department of Automatic Control and Robotics, AGH University of Science and Technology, Krakow, Poland
autor
- Department of Automatic Control and Robotics, AGH University of Science and Technology, Krakow, Poland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
autor
- Department of Automatic Control and Robotics, AGH University of Science and Technology, Krakow, Poland
- Department of Automatic Control and Robotics, AGH University of Science and Technology, Krakow, Poland
autor
- Department of Automatic Control and Robotics, AGH University of Science and Technology, Krakow, Poland
Bibliografia
- [1] Bowyer K.W., Chawla N.V., Hall L.O., and Kegelmeyer W.P. SMOTE: synthetic minority over-sampling technique. CoRR, abs/1106.1813, 2011.
- [2] Chollet F. Xception: Deep learning with depthwise separable convolutions. CoRR, abs/1610.02357, 2016.
- [3] Garland M., Jaworek-Korjakowska J., Libal U., Bogyo M., and M. S. An automatic analysis system for high-throughput clostridium difficile toxin activity screening. Applied Science, 8(1512), 2018.
- [4] He K., Zhang X., Ren S., and Sun J. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
- [5] Huang G., Liu Z., van der Maaten L., and Weinberger K.Q. Densely connected convolutional networks, 2016.
- [6] Jaworek-Korjakowska J., Kleczek P., and Gorgon M. Melanoma thickness prediction based on convolutional neural network with VGG-19 model transfer learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019.
- [7] Krizhevsky A., Sutskever I., and Hinton G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pages 1097-1105, USA, 2012. Curran Associates Inc.
- [8] Lin M., Chen Q., and Yan S. Network in network. International Conference on Learning Representations, 2014.
- [9] Lin T.-Y., Maire M., Belongie S., Bourdev L., Girshick R., Hays J., Perona P., Ramanan D., Zitnick C.L., and Dollar P. Microsoft coco: Common objects in context, 2014.
- [10] Medium.com. Review: AlexNet, CaffeNet - winner of ILSVRC 2012 (image classification). https://medium.com/coinmonks/paper-review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160, 2018. [Online; accessed 20.06.2020].
- [11] Pan S.J. and Yang Q.A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345-1359, Oct 2010.
- [12] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A.C., and Fei-Fei L. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252, 2015.
- [13] Simonyan K. and Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv:1409.1556, 2014.
- [14] Szegedy C., Liu W., Jia Y., Sermanet P., Reed S.E., Anguelov D., Erhan D., Vanhoucke V., and Rabinovich A. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, 2014.
- [15] Tan C., Sun F., Kong T., Zhang W., Yang C., and Liu C. A survey on deep transfer learning. CoRR, abs/1808.01974, 2018.
- [16] Torrey L. and Shavlik J. Transfer learning. Handbook of Research on Machine Learning Applications, 01 2009.
- [17] Yosinski J., Clune J., Bengio Y., and Lipson H. How transferable are features in deep neural networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, pages 3320-3328, Cambridge, MA, USA, 2014. MIT Press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a97029f-484b-4777-8c4f-89a6c1478d10