PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Countermeasures for local scour around the bridge pier: a review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to present the mechanism of scour and empirical equations for evaluating local scour with and without a countermeasure around the bridge pier. A critical review of scour countermeasures, mainly hydraulic, structural, and biotechnical, extending to the present time is done. Hydraulic countermeasures consist of river training structures and bed armoring. Structures placed parallel, perpendicular, or at an angle to the flow aiming to modify it is the purpose of river training works. Armoring is done through the use of riprap, partially grouted riprap, cable-tied blocks, grout-filled containers, and gabions. Structural countermeasures include foundation strengthening and pier geometry modifications. Extending footings, underpinning, and pile-underpinning are related to foundation strengthening, while pier geometry modifications include different pier features such as shapes, textures, slots, and collars. Biotechnical countermeasures include using vegetation riprap, geosynthetic polymer, live staking, and bio-stabilization using extracellular polymeric substances. Different combinations of countermeasures are also discussed. In hydraulic and structural countermeasures, riprap and collars are most commonly used due to their efficiency in scour reduction and economic feasibility. Bio-stabilization using extracellular polymeric substances is a novel measure for scour prevention. From the literature, it is concluded that pier modifications are the most effective and active area of research in which lenticular pier shape, lenticular hooked, and airfoil-shaped collar are best suited for reducing the local scour around the pier. Finally, the limitations of the countermeasures mentioned above are presented.
Czasopismo
Rocznik
Strony
701--728
Opis fizyczny
Bibliogr. 107 poz.
Twórcy
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
  • Department of Civil Engineering, National Institute of Technology, Warangal 506004, India
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
  • School of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
Bibliografia
  • 1. Afaridegan E, Heidarpour M, Goodarzi M, Fallahi B (2022) Influence of suction and collar on reducing local scouring in cylindrical pier. J Appl Water Eng Res 10(1):27-38. https://doi.org/10.1080/23249676.2021.1919225
  • 2. Agrawal KA, Khan MA, Yi Z (2007) Handbook of Scour Countermeasures Designs. New Jersey Department of Transportation, September, 210
  • 3. Aksoy AO, Bombar G, Arkis T, Guney MS (2017) Study of the timedependent clear water scour around circular bridge piers. J Hydrol Hydromechanics 65(1):26-34. https://doi.org/10.1515/johh-2016-0048
  • 4. Al-Shukur A-HK, Obeid ZH (2016) Experimental study of bridge pier. Int J Civil Eng Technol (IJCIET) 7(1):162-171
  • 5. Arneson LA, Zevenbergen LW, Lagasse PF, P E C (1991) Evaluating scour at bridges. Federal Highway Administration 18
  • 6. Ballegooy V (2004) Riprap and Cable-tied Block Performance as Scour Protection for Wing-wall Abutments Under Live Bed Conditions. In: Proceedings 2nd International Conference on Scour and Erosion (ICSE-2). November 14-17, 2004, Singapore
  • 7. Barkdoll BD, Melville BW, Ettema R (2007) A review of bridge abutment scour countermeasures. Examining the Confluence of Environmental and Water Concerns—Proceedings of the World Environmental and Water Resources Congress 2006, 906https://doi.org/10.1061/40856(200)173
  • 8. Bathurst RJ, Knight MA (1998) Analysis of geocell reinforced-soil covers over large span conduits. Comput Geotech 22(3-4):205-219. https://doi.org/10.1016/S0266-352X(98)00008-1
  • 9. Benedict ST, Caldwell AW (2014) A Pier-Scour Database: 2427 Field and Laboratory Measurements of Pier Scour; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA
  • 10. Bestawy A, Eltahawy T, Alsaluli A, Almaliki A, Alqurashi M (2020) Reduction of local scour around a bridge pier by using different shapes of pier slots and collars. Water Sci Technol: Water Supply 20(3):1006-1015. https://doi.org/10.2166/ws.2020.022
  • 11. Bhalerao AR, Garde RJ (2010) Design of riprap for protection against scour around bridge pier. ISH J Hydraul Eng 16(1):79-92. https://doi.org/10.1080/09715010.2010.10514990
  • 12. Chang W-Y, Lai J-S, Yen C-L (2004) Evolution of scour depth at circular bridge piers. J Hydraul Eng 130(9):905-913. https://doi.org/10.1061/(asce)0733-9429(2004)130:9(905)
  • 13. Chaudhuri S, Singh SK, Debnath K, Manik MK (2018) Pier scour within long contraction in cohesive sediment bed. Envi-ron Fluid Mech 18(2):417-441. https://doi.org/10.1007/s10652-017-9560-x
  • 14. Chen SC, Tfwala S, Wu TY, Chan HC, Chou HT (2018) A hooked-collar for bridge piers protection: flow fields and scour. Water (switzerland) 10(9):1-12. https://doi.org/10.3390/w10091251
  • 15. Chiew Y (1992) Scour protection at bridge piers. J Hydraul Eng 118(9):1260-1269. https://doi.org/10.1061/(asce)0733-9429(1992)118:9(1260)
  • 16. Chiew Y-M (1995) Mechanics of riprap failure at bridge piers. J Hydraul Eng 121(9):635-643. https://doi.org/10.1061/(asce)0733-9429(1995)121:9(635)
  • 17. Choi SU, Choi B (2016) Prediction of time-dependent local scour around bridge piers. Water Environ J 30(1-2):14-21. https://doi.org/10.1111/wej.12157
  • 18. Clopper PE, Lagasse PF, Zevenbergen LW (2007) Bridge pier scour countermeasures. Restoring Our Natural Habitat—Proceedings of the 2007 World Environmental and Water Resources Congress, pp 1-13. https://doi.org/10.1061/40927(243)380
  • 19. Deng L, Wang W, Yu Y (2016) State-of-the-art review on the causes and mechanisms of bridge collapse. J Perform Constr Facil 30(2):04015005. https://doi.org/10.1061/(asce)cf.1943-5509.0000731
  • 20. Dey S (1995) Three-dimensional vortex flow field around a circular cylinder in a quasi-equilibrium scour hole. Sadhana 20(6):871- 885. https://doi.org/10.1007/BF02745871
  • 21. Dey S, Sumer BM, Fredsøe J (2008) Control of scour at vertical circular piles under waves and current. XI Jornadas Espanolas De Presas 132(3):270-279. https://doi.org/10.1061/(ASCE)0733-9429(2006)132
  • 22. Ettema R, Nakato T, Muste M (2006) An illustrated guide for moni¬toring and protecting bridge waterways against scour. Project TR-515, 449, 195. http://www.iihr.uiowa.edu/wp-content/uploa ds/2013/06/TR449-Guide-for-Monitoring pdf
  • 23. Ezzeldin RM (2019) Numerical and experimental investigation for the effect of permeability of spur dikes on local scour. J Hydroinf 21(2):335-342
  • 24. Farooq R, Ghumman AR (2019) Impact Assessment of pier shape and modifications on scouring around bridge pier. Water 11(9):1761
  • 25. Farooq R, Ghumman AR, Tariq MAUR, Ahmed A, Jadoon KZ (2020) Optimal octagonal hooked collar countermeasure to reduce scour around a single bridge pier. Period Polytech Civ Eng 64(4):1026- 1037. https://doi.org/10.3311/PPci.15966
  • 26. Farooq R, Azimi AH, Tariq MAUR, Ahmed A (2023) Effects of hooked-collar on the local scour around a lenticular bridge pier. Int J Sedim Res 38(1):1-11. https://doi.org/10.1016/j.ijsrc.2022. 07.002
  • 27. Franzetti S, Radice A, Rebai D, Ballio F (2022) Clear water scour at circular piers: a new formula fitting laboratory data with less than 25% deviation. J Hydraul Eng. https://doi.org/10.1061/(asce)hy.1943-7900.0002009
  • 28. Froehlich DC (2013) Protecting bridge piers with loose rock riprap. J Appl Water Eng Res 1(1):39-57. https://doi.org/10.1080/23249 676.2013.828486
  • 29. Gaudio R, Tafarojnoruz A, Calomino F (2012) Combined flow-altering countermeasures against bridge pier scour. J Hydraul Res 50(1):35-43. https://doi.org/10.1080/00221686.2011.649548
  • 30. Gazi AH, Afzal MS (2020) A review on hydrodynamics of horseshoe vortex at a vertical cylinder mounted on a flat bed and its implication to scour at a cylinder. Acta Geophys 68(3):861-875. https://doi.org/10.1007/s11600-020-00439-8
  • 31. Ghorbani B, Kells JA (2008) Effect of submerged vanes on the scour occurring at a cylindrical pier. J Hydraul Res 46(5):610-619. https://doi.org/10.3826/jhr.2008.3003
  • 32. Grimaldi C, Gaudio R, Calomino F, Cardoso AH (2009) Control of scour at bridge piers by a downstream bed sill. J Hydraul Eng 135(1):13-21. https://doi.org/10.1061/(asce)0733-9429(2009) 135:1(13)
  • 33. Gris RB (2010) Sheath for Reducing Local Scour in Bridge Piers Robie. In Scour and Erosion ASCE, 2010(564), pp 1-73
  • 34. Guo J (2012) Pier scour in clear water for sediment mixtures. J Hydraul Res 50(1):18-27. https://doi.org/10.1080/00221686.2011.644418
  • 35. Guo J, Suaznabar O, Shan H, Shen J (2012) Pier scour in clear-water conditions with non-uniform bed materials. May
  • 36. Gupta LK, Pandey M, Raj PA, Shukla AK (2023a) Fine sediment intrusion and its consequences for river ecosystems: a review. J Hazard, Toxic, Radioact Waste 27(1):04022036. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000729
  • 37. Gupta LK, Pandey M, Raj PA, Pu JH (2023b) Scour reduction around bridge pier using the airfoil-shaped collar. Hydrology. https://doi.org/10.3390/hydrology10040077
  • 38. Gupta LK, Pandey M, Anand Raj P (2023c) Numerical simulation of local scour around the pier with and without airfoil collar (AFC) using FLOW-3D. Environ Fluid Mech. https://doi.org/10.1007/s10652-023-09932-2
  • 39. Gupta LK, Pandey M, Raj PA (2023d) Numerical modeling of scour and erosion processes around spur dike. Clean-soil Air Water. https://doi.org/10.1002/clen.202300135
  • 40. Gupta LK, Pandey M, Raj PA (2023e) Impact of airfoil collar on scour reduction around the bridge pier. Ocean Eng 290:116271. https://doi.org/10.1016/j.oceaneng.2023.116271
  • 41. Hamidifar H, Mohammad S, Shahabi-haghighi B, Meng Y (2022) Collar performance in bridge pier scour with debris accumulation. Int J Sedim Res 37(3):328-334. https://doi.org/10.1016/j.ijsrc.2021.10.002
  • 42. Izadinia E, Heidarpour M (2022) Parametric study for hydraulic design of air-bubble injections to control scour around circular bridge piers. ISH J Hydraul Eng. https://doi.org/10.1080/09715010.2022.2058331
  • 43. Jahangirzadeh A, Basser H, Akib S, Karami H, Naji S (2014) Experimental and numerical investigation of the effect of different shapes of collars on the reduction of scour around a single bridge pier. PLoS ONE 9(6):e98592. https://doi.org/10.1371/journal.pone.0098592
  • 44. Jalal HK, Hassan WH (2020) Effect of bridge pier shape on depth of scour. IOP Conf Ser: Mater Sci Eng. https://doi.org/10.1088/1757-899X/671/1/012001
  • 45. Jones JS, Bertoldi D, Stein S (1995) Alternatives to Riprap as a Scour Countermeasure. Transportation Research Board Conference Proceedings, pp 261-278
  • 46. Khosronejad A, Kang S, Sotiropoulos F (2012) Experimental and computational investigation of local scour around bridge piers. Adv Water Resour 37:73-85. https://doi.org/10.1016/j.advwa tres.2011.09.013
  • 47. Kim I, Fard MY, Chattopadhyay A (2014) Investigation of a bridge pier scour prediction model for safe design and inspection. J Bridge Eng. https://doi.org/10.1061/(ASCE)BE.1943
  • 48. Kothyari UC, Hager WH, Oliveto G (2007) Generalized approach for clear-water scour at bridge foundation elements. J Hydraul Eng 133(11):1229-1240. https://doi.org/10.1061/(asce)0733-9429(2007)133:11(1229)
  • 49. Kreyenschulte M, Schurenkamp D, Bratz B, Schuttrumpf H, Goseberg N (2020) Wave run-up on mortar-grouted riprap revetments. Water (switzerland). https://doi.org/10.3390/w12123396
  • 50. Kumar V, Raju KGR, Vittal N (1999) Reduction of local scour around bridge piers using slots and collars. J Hydraul Eng 125(2):1302-1305
  • 51. Kumar A (2017) Three-Dimensional Flow Measurements at Circular Pier, pp 397-406. https://doi.org/10.1007/978-3-319-55125-8_34
  • 52. Lagasse PF, Clopper PE, Zevenbergen LW, Girard LG (2007) Countermeasures to protect bridge piers from scour. Transp Res Board. https://doi.org/10.17226/17612
  • 53. Lagasse PF, Clopper PE, Arneson LA (2008) Partially grouted riprap as a pier scour countermeasure. World Environmental and Water Resources Congress 2008: Ahupua’a—Proceedings of the World Environmental and Water Resources Congress 2008, 316, pp 1-10. https://doi.org/10.1061/40976(316)348
  • 54. Lagasse PF, Clopper PE, Pagan-Ortiz JE, Zevenbergen LW, Arneson LA, Schall JD, Girard LG (2009) Bridge scour and stream instability countermeasures: experience, selection, and design guidance-third edition. Hydraul Eng Circ 2(23):376
  • 55. Lai YG, Asce AM, Liu X, Asce M, Bombardelli FA, Asce AM, Song Y (2022) Three-dimensional numerical modeling of local scour : a state-of-the-art review and perspective. J Hydraul Eng 148(11):1-16. https://doi.org/10.1061/(ASCE)HY.1943-7900.0002019
  • 56. Lanęa RM, Fael CS, Maia RJ, Pego JP, Cardoso AH (2013) Clearwater scour at comparatively large cylindrical piers. J Hydraul Eng 139(11):1117-1125. https://doi.org/10.1061/(asce)hy.1943-7900.0000788
  • 57. Lauchlan CS, Melville BW (2001) Riprap protection at bridge piers. J Hydraul Eng 127(5):412-418
  • 58. Laxmi Narayana P, Timbadiya PV, Patel PL (2022) Bed level variations around submerged tandem bridge piers in sand beds. ISH J Hydraul Eng 28(S1):149-157. https://doi.org/10.1080/09715010.2020.1723138
  • 59. LeBeau KH, Wadia-Fascetti SJ (2007) Fault tree analysis of schoharie creek bridge collapse. J Perform Constr Facil 21(4):320- 326. https://doi.org/10.1061/(asce)0887-3828(2007)21:4(320)
  • 60. Li S, He S, Li H, Jin Y (2017) Scour depth determination of bridge piers based on time-varying modal parameters: application to hangzhou bay bridge. J Bridg Eng 22(12):1-13. https://doi.org/10.1061/(asce)be.1943-5592.0001154
  • 61. Liang B, Du S, Pan X, Zhang L (2020) Local scour for vertical piles in steady currents: review of mechanisms, influencing factors and empirical equations. J Mar Sci Eng. https://doi.org/10.3390/JMSE8010004
  • 62. Melville BW, Sutherland AJ (1988) Design method for local scour at bridge piers. J Hydraul Eng 114(10):1210-1226
  • 63. Melville BW, Raudkivi AJ (1996) Effects of foundation geometry on bridge pier scour. J Hydraul Eng 122(4):203-209. https://doi.org/10.1061/(asce)0733-9429(1996)122:4(203)
  • 64. Melville BW, Chiew Y (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125:59-65
  • 65. Melville BW, Hadfield AC (1999) Use of sacrificial piles as pier scour countermeasures. J Hydraul Eng 125(11):1221-1224
  • 66. Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publication, Colorado
  • 67. Melville B, Asce M, Ballegooy RV, Ballegooy SV (2006a) Flow-induced failure of cable-tied blocks. J Hydraul Eng 132(3):324-327
  • 68. Melville B, van Ballegooy S, Coleman S, Barkdoll B (2006b) Countermeasure toe protection at spill-through abutments. J Hydraul Eng 132(3):235-245. https://doi.org/10.1061/(asce)0733-9429(2006)132:3(235)
  • 69. Memar S, Zounemat-Kermani M, Beheshti A, Rahimpour M, De Cesare G, Schleiss AJ (2020) Influence of collars on reduction in scour depth at two piers in a tandem configuration. Acta Geophys 68:229-242
  • 70. Molinas A, Hosni MM (1999) Effects of Gradation and Cohesion on Bridge Scour: Volume 4: Experimental Study of Scour Around Circular Piers in Cohesive Soils (vol 4)
  • 71. Moncada-M AT, Aguirre-Pe J, Bolrvar JC, Flores EJ (2009) Scour protection of circular bridge piers with collars and slots. J Hydraul Res 47(1):119—126. https://doi.org/10.3826/jhr.2009.3244
  • 72. Muhawenimana V, Foad N, Ouro P, Wilson CAME (2022) Local scour patterns around a bridge pier with cable-wrapping. Fluids 8(1):3. https://doi.org/10.3390/fluids8010003
  • 73. Nandi B, Das S (2023) Identify most promising temporal scour depth formula for circular piers proposed over last six decades. Ocean Eng 286:115639. https://doi.org/10.1016/j.oceaneng.2023.115639
  • 74. Nayyer S, Farzin S, Karami H, Rostami M (2019) A numerical and experimental investigation of the effects of combination of spur dikes in series on a flow field. J Braz Soc Mech Sci Eng 41:1-11
  • 75. Oliveto G, Hager WH (2002) Temporal evolution of clear-water pier and abutment scour. J Hydraul Eng 128(9):811-820. https://doi.org/10.1061/(asce)0733-9429(2002)128:9(811)
  • 76. Omara H, Ookawara S, Nassar KA, Masria A, Tawfik A (2022) Assessing local scour at rectangular bridge piers. Ocean Eng 266(P3):112912. https://doi.org/10.1016/j.oceaneng.2022.112912
  • 77. Pagliara S, Carnacina I, Cigni F (2010) Sills and gabions as countermeasures at bridge pier in presence of debris accumulations. J Hydraul Res 48(6):764-774
  • 78. Pandey M, Azamathulla HM, Chaudhuri S, Pu JH, Pourshahbaz H (2020a) Reduction of time-dependent scour around piers using collars. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2020.107692
  • 79. Pandey M, Oliveto G, Pu JH, Sharma PK, Ojha CSP (2020b) Pier scour prediction in non-uniform gravel beds. Water (switzerland) 12(6):13-17. https://doi.org/10.3390/W12061696
  • 80. Pandey M, Pu JH, Pourshahbaz H, Khan MA (2022) Reduction of scour around circular piers using collars. J Flood Risk Manag 15(3):1-16. https://doi.org/10.1111/jfr3.12812
  • 81. Park SK, Julien PY, Ji U, Ruff JF (2008) Case study: retrofitting large bridge piers on the nakdong river South Korea. J Hydraul Eng 134(10):1532-1535. https://doi.org/10.1061/(ASCE)0733-9429(2008)134
  • 82. Patel PL, Raju KGR (2010) Critical tractive stress of nonuniform sediments. J Hydraul Res 66:37-41
  • 83. Patel HK, Arora S, Chavan R, Kumar B (2024) Migrating scour depth around a spur dike with downward seepage using multiscale characterizations. Exp Thermal Fluid Sci 151:111071
  • 84. Pizarro A, Manfreda S, Tubaldi E (2020) The science behind scour at bridge foundations: a review. Water (switzerland). https://doi.org/10.3390/w12020374
  • 85. Prendergast LJ, Gavin K (2014) A review of bridge scour monitoring techniques. J Rock Mech Geotech Eng 6(2):138-149. https://doi.org/10.1016/j.jrmge.2014.01.007
  • 86. Qi H, Yuan T, Zhao F, Chen G, Tian W, Li J (2023) Local scour reduction around cylindrical piers using permeable collars in clear water. Water 15(5):897
  • 87. Richardson D (2001) Evaluating scour at bridges, Report No. FHWA- IP-90-017. Federal Highway Administration, US Department of Transportation, Washington, DC, USA, FHWA-IP-90(18)
  • 88. Schindler R, Whitehouse R, Harris J (2022) Sticky stuff: biological cohesion for scour and erosion prevention. Environ Technol (UK). https://doi.org/10.1080/09593330.2022.2052362
  • 89. Shahriar AR, Ortiz AC, Montoya BM, Gabr MA (2021) Bridge pier scour: an overview of factors affecting the phenomenon and comparative evaluation of selected models. Transp Geotech. https://doi.org/10.1016/j.trgeo.2021.100549
  • 90. Sheppard DM, Demir H, Melville BW (2011) Scour at wide piers and long skewed piers.Transportation Research Board, vol 682
  • 91. Sumer BM, Christiansen N, Fredsoe J (1992) Time Scale Of Scour Around A Vertical Pile. In The Second International Offshore and Polar Engineering Conference (p ISOPE-I-92-259)
  • 92. Tafarojnoruz A, Gaudio R, Dey S (2010) Flow-altering countermeasures against scour at bridge piers: a review. J Hydraul Res 48(4):441-452. https://doi.org/10.1080/00221686.2010.491645
  • 93. Tafarojnoruz A, Gaudio R, Calomino F (2012) Evaluation of flowaltering countermeasures against bridge pier scour. J Hydraul Eng 138(3):297-305
  • 94. Tang ZH, Melville B, Singhal N, Shamseldin A, Zheng JH, Guan DW, Cheng L (2022) Countermeasures for local scour at offshore wind turbine monopile foundations: a review. Water Sci Eng 15(1):15-28. https://doi.Org/10.1016/j.wse.2021.12.010
  • 95. Tao J, Li J, Wang X, Bao R (2018) Nature-inspired bridge scour countermeasures: streamlining and biocementation. J Test Eval 46(4):1376-1390
  • 96. Tison LJ (1961) Local scour in rivers. J Geophys Res 66(12):4227- 4232. https://doi.org/10.1029/jz066i012p04227
  • 97. Valela C, Rennie CD, Nistor I (2022a) Improved bridge pier collar for reducing scour. Int J Sedim Res 37(1):37-46. https://doi.org/10.1016/j.ijsrc.2021.04.004
  • 98. Valela C, Whittaker CN, Rennie CD, Nistor I, Melville BW (2022b) Novel riprap structure for improved bridge pier scour protection. J Hydraul Eng 148(3):04022002
  • 99. Vijayasree BA, Eldho TI, Mazumder BS, Ahmad N (2019) Influence of bridge pier shape on flow field and scour geometry. Int J River Basin Manag 17(1):109-129. https://doi.org/10.1080/15715124.2017.1394315
  • 100. Vijayasree BA, Eldho TI, Mazumder BS (2020) Turbulence statistics of flow causing scour around circular and oblong piers. J Hydraul Res 58(4):673-686. https://doi.org/10.1080/00221686.2019.1661292
  • 101. Wang S, Wei K, Shen Z, Xiang Q (2019) Experimental investigation of local scour protection for cylindrical bridge piers using anti-scour collars. Water (switzerland). https://doi.org/10.3390/w11071515
  • 102. Wardhana K, Hadipriono FC (2003) Analysis of recent bridge failures in the United States. J Perform Constr Facil 17(3):144-150. https://doi.org/10.1061/(asce)0887-3828(2003)17:3(144)
  • 103. Worman A (1990) Riprap protection without filter layers. J Hydraul Eng 115(12):1615-1630
  • 104. Yoon TH, Kim DH (2004) Bridge pier scour protection by sack gabions. Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges—Proceedings of the World Water and Environmental Resources Congress 2001, 111. https://doi.org/10.1061/40569(2001)256
  • 105. Zhang X, Sun B (2003) Parametric study on the aerodynamic stability of a long-span suspension bridge. J Wind Eng Ind Aerodyn 92(6):431-439. https://doi.org/10.1016/j.jweia.2004.01.007
  • 106. Zhang H, Nakagawa H (2008) Scour around Spur Dyke : recent advances and future researches. Annu Disas Prev Res, Kyoto Univ, Inst, Annu Disas Prev Res, Kyoto Univ Inst 51B:633-652
  • 107. Zhang J, Peng H, Cai CS (2013) Destructive testing of a decommissioned reinforced concrete bridge. J Bridg Eng 18(6):564-569. https://doi.org/10.1061/(asce)be.1943-5592.0000408
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a965dec-c6fd-48ec-a3da-093ec151fa49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.