PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A pore scale study on fluid flow through two dimensional dual scale porous media with small number of intraparticle pores

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the fluid flow in a periodic, non-isotropic dual scale porous media consisting of permeable square rods in inline arrangement is analyzed to determine permeability, numerically. The continuity and Navier-Stokes equations are solved to obtain the velocity and pressure distributions in the unit structures of the dual scale porous media for flows within Darcy region. Based on the obtained results, the intrinsic inter and intraparticle permeabilities and the bulk permeability tensor of the dual scale porous media are obtained for different values of inter and intraparticle porosities. The study is performed for interparticle porosities between 0.4 and 0.75 and for intraparticle porosities from 0.2 to 0.8. A correlation based on Kozeny-Carman relationship in terms of inter and intraparticle porosities and permeabilities is proposed to determine the bulk permeability tensor of the dual scale porous media.
Rocznik
Strony
80--92
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Izmir Institute of Technology, Mechanical Engineering Department, Urla 35430 Izmir, Turkey
autor
  • Izmir Institute of Technology, Mechanical Engineering Department, Urla 35430 Izmir, Turkey
  • Current address: Faculty of Engineering, 3-5-1 Johoku Naka-ku, Hamamatsu, 432-8561 Japan
autor
  • Izmir Institute of Technology, Mechanical Engineering Department, Urla 35430 Izmir, Turkey
  • Current address: Vocational School, Izmir University of Economics, Balcova 35330 Izmir, Turkey
Bibliografia
  • 1. Pianko-Oprych, P. (2011). Modelling of heat transfer in a packed bed column. Pol. J. Chem. Technol. 13(4), 34–41. DOI: 10.2478/v10026-011-0046-1.
  • 2. Tomaszewska, M. & Bialonczyk, L. (2011). The investigation of ethanol separation by the membrane distillation process. Pol. J. Chem. Technol. 13(3), 66–69. DOI: 10.2478/v10026-011-0040-7.
  • 3. Nakayama, A., Kuwahara, F. & Umemoto, T. (2002). Hayashi, T., Heat and Fluid Flow Within an Anisotropic Porous Medium. J. Heat Transf. 124(4), 746. DOI: 10.1115/1.1481355.
  • 4. Ozgumus, T., Mobedi, M. & Ozkol, U. (2014). Determination of Kozeny Constant Based On Porosity and Pore to Throat Size Ratio in Porous Medium with Rectangular Rods. Eng. Appl. Comp. Fluid 8, 308–318. DOI: 10.1080/19942060.2014.11015516.
  • 5. Yu, B. & Cheng, P. (2002). A Fractal Permeability Model for Bi-dispersed Porous Media. Int. J. Heat Mass Tran. 45, 2983–2993. DOI: 10.1016/S0017-9310(02)00014-5.
  • 6. Papathanasiou, T.D. (2001). Flow Across Structured Fiber Bundles: A Dimensionless Correlation. Int. J. Multiphas Flow 27, 1451–1461. DOI:10.1016/S0301-9322(01)00013-1.
  • 7. Hwang, W.R. & Advani, S.G. (2010). Numerical Simulations of Stokes–Brinkman Equations for Permeability Prediction of Dual Scale Fibrous Porous Media. Phys Fluids 22(11), 113101. DOI: 10.1063/1.3484273.
  • 8. Ranganathan, S. (1996). A Generalized Model for the Transverse Fluid Permeability in Unidirectional Fibrous Media. Polym. Composite 17, 222–230. DOI: 10.1002/pc.10607.
  • 9. Byon, C. & Kim, S.J. (2013). Permeability of Mono- and Bi-dispersed Porous Media. EPJ Web of Conferences 45, 01018. DOI: 10.1051/epjconf/20134501018.
  • 10. Nield, D.A. & Kuznetsov, A.V. (2011). Forced Convection in a Channel Partly Occupied by a Bidisperse Porous Medium: Symmetric Case. J. Heat Transf. 133(7), 072601. DOI: 10.1115/1.4003667.
  • 11. Saada, M.A., Chikh, S. & Campo, A. (2005). Analysis of hydrodynamic and thermal dispersion in porous media by means of a local approach. Heat Mass Transf. 42(11), 995–1006. DOI: 10.1007/s00231-005-0061-y.
  • 12. Ngo, N.D. & Tamma, K.K. (2001). Microscale Permeability Predictions of Porous Fibrous Media. Int. J. Heat Mass Transf. 44, 3135–3145. DOI: 10.1016/S0017-9310(00)00335-5.
  • 13. Nedanov, P.B. & Advani, S.G. (2002). Numerical Computation of the Fiber Preform Permeability Tensor by the Homogenization Method. Polym. Composite 23, 758–770. DOI: 10.1002/pc.10474.
  • 14. Tahir, M.W. & Hallström, S. (2014). Åkermo, M., Effect of Dual Scale Porosity on the Overall Permeability of Fibrous Structures. Compos. Sci. Technol. 103, 56–62. DOI: 10.1016/j.compscitech.2014.08.008.
  • 15. Wang, Q., Mazé, B., Vahedi Tafreshi, H. & Pourdeyhimi, B. (2006). A note on permeability simulation of multifilament woven fabrics. Chem. Eng. Sci. 61(24), 8085–8088. DOI:10.1016/j.ces.2006.09.043.
  • 16. Nabovati, A., Llewellin, E.W. & Sousa, A.C.M. (2010). Through-thickness permeability prediction of three-dimensional multifilament woven fabrics. Compos. Part A- Appl. S. 41(4), 453–463. DOI: 10.1016/j.compositesa.2009.11.011.
  • 17. Tung, K.L., Shiau, J.S., Chuang, C.J., Li, Y.L. & Lu, W.M. (2002). CFD analysis on fluid flow through multifilament woven filter cloths. Separ. Sci. Technol. 37(4), 799–821. DOI: 10.1081/SS-120002218.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a8dfb64-48c9-428d-8b0c-4a9ab63bf5dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.