PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and Characterization of CuO Nanoparticles by the Chemical Liquid Deposition Method and Investigation of Its Catalytic Effect on the Thermal Decomposition of Ammonium Perchlorate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper oxide nanoparticles have been synthesized by the chemical liquid deposition method and characterized by means of X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The XRD and SEM results showed that the particle size was between 50 nm and 70 nm. Ammonium perchlorate (AP)-CuO nanostructures have been prepared by ex-situ mixing of AP and CuO nanoparticles, while AP/CuO nanocomposites have been obtained by in-situ growth of nano CuO on the surface of AP. The effect of the nanoparticles on the thermal decomposition of AP has been examined by differential scanning calorimetery (DSC) and thermogravimetric analysis (TGA) methods. The results showed that the ex-situ prepared nanoparticles had better catalytic activity than the in-situ prepared ones. The effect of the synthesized nanoparticles on the thermal decomposition of AP in experiments with a AP to CuO ratio of 98:2 was as follows: with the ex-situ prepared experiments, the decomposition temperature decreased from 428 °C to 348 °C and the heat released increased from 344 J·g−1 to 1432 J·g−1, while those with the in-situ prepared samples exhibited 341 °C and 1317 J·g−1, respectively.
Rocznik
Strony
152--168
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
  • Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
  • Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran, Iran
autor
  • Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
Bibliografia
  • [1] Fierro, J. L. G. Metal Oxides Chemistry and Applications. Taylor & Francis, Boca Raton, 2006; ISBN 9780824723712.
  • [2] Tiwari, A.; Mishra, A. K.; Kobayashi, H.; Turner, A. P. (Eds.), Intelligent Nanomaterials: Processes, Properties, and Applications. John Wiley & Sons Scrivener Pub., Hoboken, 2012; ISBN 9780470938799.
  • [3] Cain, J.; Brewster, M.Q. Radiative Ignition of Fine‐Ammonium Perchlorate Composite Propellants. Propellants Explos. Pyrotech. 2006, 31(4): 278-284.
  • [4] Li, L.; Sun, X.; Qiu, X.; Xu, J.; Li, G. Nature of Catalytic Activities of CoO Nanocrystals in Thermal Decomposition of Ammonium Perchlorate. Inorg. Chem. 2008, 47(19): 8839-8846.
  • [5] Yin, J.; Lu, Q.; Yu, Z.; Wang, J.; Pang, H.; Gao, F. Hierarchical ZnO Nanorodassembled Hollow Superstructures for Catalytic and Photoluminescence applications. Cryst. Growth Des. 2009, 10(1): 40-43.
  • [6] Sun, X.; Qiu, X.; Li, L.; Li, G. ZnO Twin-cones: Synthesis, Photoluminescence, and Catalytic Decomposition of Ammonium Perchlorate. Inorg. Chem. 2008, 47(10): 4146-4152.
  • [7] Zhu, J.; Zeng, G.; Nie, F.; Xu, X.; Chen, S.; Han, Q.; Wang, X. Decorating Graphene Oxide with CuO Nanoparticles in a Water-Isopropanol System. Nanoscale 2010,2(6): 988-994.
  • [8] Eslami, A.; Hosseini, S. G.; Bazrgary, M. Improvement of Thermal Decomposition Properties of Ammonium Perchlorate Particles Using Some Polymer Coating Agents. J. Therm. Anal. Calorim. 2013, 113(2): 721-730.
  • [9] Ma, Z.; Li, F. Preparation and Thermal Decomposition Behavior of TMOS/AP Composite Nanoparticles. Nanoscience 2006, 11: 142-145.
  • [10] Yuan, Y.; Jiang, W.; Wang, Y.; Shen, P.; Li, F.; Li, P.; Zhao, F.; Gao, H. Hydrothermal Preparation of Fe2O3/Graphene Nanocomposite and its Enhanced Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. Appl. Surf. Sci. 2014, 303: 354-359.
  • [11] Zhang, Z. K.; Guo, D. Z.; Zhang, G. M. Preparation, Characterization and Catalytic Property of CuO Nano/Microspheres via Thermal Decomposition of Cathodeplasma Generating Cu2-(OH)3NO3 Nano/Microspheres. J. Colloid Interface Sci. 2011, 357(1): 95-100.
  • [12] Li, Z.; Xiang, X.; Bai, L.; Li, F. A Nanocomposite Precursor Strategy to Mixedmetal Oxides with Excellent Catalytic Activity for Thermal Decomposition of Ammonium Perchlorate. Appl. Clay Sci. 2012, 65: 14-20.
  • [13] Luo, Y. X.; Lu, L. D.; Liu, X. H.; Yang, X. J.; Wang, X. Synthesis of Nanocrystalline CuO and its Catalytic Activity on the Thermal Decomposition of NH4ClO4. Chin. J. Inorg. Chem. 2002, 18(12): 1211-1214.
  • [14] Cheng, Z. P.; Xu, J. M.; Zhong, H.; Chu, X. Z.; Song, J. Novel Urchin-like Pd Nanostructures Prepared by a Simple Replacement Reaction and their Catalytic Properties. Appl. Surf. Sci. 2011, 257(18): 8028-8032.
  • [15] Vyazovkin, S.; Wight, C. A. Kinetics of Thermal Decomposition of Cubic Ammonium Perchlorate. Chem. Mater. 1999, 11(11): 3386-3393.
  • [16] Solymosi, F.; Krix, E. Catalysis of Solid Phase Reactions Effect of Doping of Cupric Oxide Catalyst on the Thermal Decomposition and Explosion of Ammonium Perchlorate. J. Catal. 1962, 1(5): 468-480.
  • [17] Jacobs, P. W. M.; Whitehead, H. M. Decomposition and Combustion of Ammonium Perchlorate. Chem. Rev. 1969, 69(4): 551-590.
  • [18] Jain, S. R.; Nambiar, P. R. Effect of Tetramethylammonium Perchlorate on Ammonium Perchlorate and Propellant Decomposition. Thermochim. Acta 1976, 16(1): 49-54.
  • [19] Li, N.; Geng, Z.; Cao, M.; Ren, L.; Zhao, X.; Liu, B.; Tian, Y.; Hu, C. Welldispersed Ultrafine Mn3O4 Nanoparticles on Graphene as a Promising Catalyst for the Thermal Decomposition of Ammonium Perchlorate. Carbon 2013, 54: 124-132.
  • [20] Charavarthy, S. R.; Price, E. W.; Sigman, R. K. Mechanism of Burning Rate Enhancement of Composite Solid Propellants by Ferric Oxide. J. Prop. Power 1997, 13(4): 471-480.
  • [21] Survase, D. V.; Gupta, M.; Asthana, S. N. The Effect of Nd2O3 on Thermal and Ballistic Properties of Ammonium Perchlorate (AP) Based Composite Propellants. Prog. Cryst. Growth. Charact. Mater. 2002, 45(1): 161-165.
  • [22] Zhou, H.; Lv, B.; Wu, D.; Xu, Y. Synthesis of Polycrystalline Co3O4 Nanowires with Excellent Ammonium Perchlorate Catalytic Decomposition Property. Mater. Res. Bull. 2014, 60: 492-497.
  • [23] Patil, P. R.; Krishnamurthy, V. E.; Joshi, S. S. Effect of Nano‐copper Oxide and Copper Chromite on the Thermal Decomposition of Ammonium Perchlorate. Propellants Explos. Pyrotech. 2008, 33(4): 266-270.
  • [24] Chaturvedi, S.; Dave, P. N. Nano-metal Oxide: Potential Catalyst on Thermal Decomposition of Ammonium Perchlorate. J. Exp. Nanosci. 2012, 7(2): 205-231.
  • [25] Karunakaran, C.; Rajeswari, V.; Gomathisankar, P. Optical, Electrical, Photocatalytic, and Bactericidal Properties of Microwave Synthesized Nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 2011, 13(5): 923-928.
  • [26] Chen, L.; Zhu, D. The Particle Dimension Controlling Synthesis of α-MnO2 Nanowires with Enhanced Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. Solid State Sci. 2014, 27: 69-72.
  • [27] Abazari, R.; Sanati, S.; Perovskite, L. FeO3 Nanoparticles Synthesized by the Reverse Microemulsion Nanoreactors in the Presence of Aerosol-OT: Morphology, Crystal Structure, and their Optical Properties. Superlattices Microstruct. 2013, 64: 148-157.
  • [28] Al-Syadi, A. M.; Yousef, E. S.; El-Desoky, M. M.; Al-Assiri, M. S. Kinetic Characterization of Barium Titanate-Bismuth Oxide-Vanadium Pentoxide Glasses. Solid State Sci. 2014, 32: 48-55.
  • [29] Weber, R. W.; Moller, K. P.; O’Connor, C. T. The Chemical Vapour and Liquid Deposition of Tetraethoxysilane on ZSM-5, Mordenite and Beta. Microporous Mesoporous Mater. 2000, 35: 533-543.
  • [30] Zhou, J. G.; Addison, A.; He, Z.; Wang, F. Chemical Liquid Deposition Process for Microstructure Fabrication. Mater. Des. 2005, 26(8): 670-679.
  • [31] Yue, Y. H.; Tang, Y.; Liu, Y.; Gao, Z. Chemical Liquid Deposition Zeolites with Controlled Pore-opening Size and Shape-selective Separation of Isomers. Ind. Eng. Chem. Res. 1996, 35(2): 430-433.
  • [32] Zhang, B.; Wang, C.; Lang, L.; Cui, R.; Liu, X. Selective Defect‐patching of Zeolite Membranes Using Chemical Liquid Deposition at Organic/Aqueous Interfaces. Adv. Funct. Mater. 2008, 18(21): 3434-3443.
  • [33] Cullity, B. D.; Stock, S. R. Elements of X-ray Diffraction. Pearson Education, Harlow, 2014; ISBN 9781292040547.
  • [34] Sugama, T. Yttrium Acetate-derived Particle Coatings for Mitigating Oxidation and Corrosion of Inconel 625. J. Sol-Gel Sci. Technol. 1998, 12(1): 35-48.
  • [35] Chen, L.; Li, L.; Li, G. Synthesis of CuO Nanorods and their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate. J. Alloy. Compd. 2008, 464(1): 532-536.
  • [36] Darezereshki, E. Synthesis of Maghemite (γ-Fe2O3) Nanoparticles by Wet Chemical Method at Room Temperature. Mater. Lett. 2010, 64(13): 1471-1472.
  • [37] Chen, L. J.; Li, L. P.; Li, G. S. Synthesis of CuO Nanorods and their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate. J. Alloys Compd. 2008, 464 (1): 532-536.
  • [38] Boldyrev, V. Thermal Decomposition of Ammonium Perchlorate. Thermochim. Acta 2006, 443(1): 1-36.
  • [39] Li, L.; Zhou, Y.; Li, Z.; Ma, Y.; Pei, C. One Step Fabrication of Mn3O4/Carbonated Bacterial Cellulose with Excellent Catalytic Performance upon Ammonium Perchlorate Decomposition. Mater. Res. Bull. 2014, 60: 802-807.
  • [40] Jacobs, P. W. M.; Pearson, G. S. Mechanism of the Decomposition of Ammonium Perchlorate. Combust. Flame 1969, 13(4): 419-430.
  • [41] Rosser, W. A.; Inami, S. H.; Wise, H. Thermal Decomposition of Ammonium Perchlorate. Combust. Flame 1968, 12(5): 427-435.
  • [42] Devi, T. G.; Kannan, M. P.; Hema, B. Thermal Decomposition of Cubic Ammonium Perchlorate − the Effect of Barium Doping. Thermochim. Acta 1996, 285(2): 269-276.
  • [43] Alizadeh-Gheshlaghi, E.; Shaabani, B.; Khodayari, A.; Azizian-Kalandaragh, Y.; Rahimi, R. Investigation of the Catalytic Activity of Nano-sized CuO, Co3O4 and CuCo2O4 Powders on Thermal Decomposition of Ammonium Perchlorate. Powder Technol. 2012, 217: 330-339.
  • [44] Chaturvedi, S.; Dave, P. N. A Review on the Use of Nanometals as Catalysts for the Thermal Decomposition of Ammonium Perchlorate. J. Saudi Chem. Soc. 2013, 17(2): 135-149.
  • [45] Hosseini, S. G.; Abazari, R. A Facile One-step Route for Production of CuO, NiO, and CuO–NiO Nanoparticles and Comparison of their Catalytic Activity for Ammonium Perchlorate Decomposition. RSC Adv. 2015, 117: 96777-96784.
  • [46] Eslami, A.; Juibari, N. M.; Hosseini, S. G. Fabrication of Ammonium Perchlorate/ Copper-Chromium Oxides Core-shell Nanocomposites for Catalytic Thermal Decomposition of Ammonium Perchlorate. Mater. Chem. Phys. 2016, 181: 12-20.
  • [47] Yang, Y.; Yu, X.; Wang, J.; Wang, Y. Effect of the Dispersibility of Nano-CuO Catalyst on Heat Releasing of AP/HTPB Propellant. J. Nanomater. 2011, Article ID 180896.
  • [48] Patil, P. R.; Krishnamurthy, V. N.; Joshi, S. S. Differential Scanning Calorimetric Study of HTPB Based Composite Propellants in Presence of Nano Ferric Oxide. Propellants Explos. Pyrotech. 2006, 31(6): 442-446.
  • [49] Joshi, S. S.; Patil, P. R.; Krishnamurthy, V. N. Thermal Decomposition of Ammonium Perchlorate in the Presence of Nanosized Ferric Oxide. Def. Sci. J. 2008, 58(6): 271-272.
  • [50] Mahinroosta, M. Catalytic Effect of Commercial Nano-CuO and Nano-Fe2O3 on Thermal Decomposition of Ammonium Perchlorate. J. Nanostructure Chem. 2013, 3(1): 1-6.
  • [51] Wang, J.; He, S.; Li, Z.; Jing, X.; Zhang, M.; Jiang, Z. Synthesis of Chrysalis-like CuO Nanocrystals and their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate. J. Chem. Sci. 2009, 121(6): 1077-1081.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a824ec1-d219-44a4-a0e1-4bd7ee120a9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.