PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of ejector operating with isobutane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rapid growth of various applications of the ejection refrigeration systems could be observed recently. Because of possibility of the application of solar or waste energy to supply the motive energy they can be thought as a real alternative to compression devices in air-conditioning technologies. Ejection system can effectively compete with absorption system under temperature of the motive heat source lower than 80°C. The paper deals with CFD numerical simulation along with experimental investigations carried out on a specially constructed prototype/stand for the case of isobutane as a working fluid under motive vapour temperature below 75°C. The numerical and experimental results of entrainment ratio were compared. A good accuracy between numerical and experimental results was observed. The divergent of the results are lower than 20% for tested series. The exemplary pressure and velocity field were presented. Also it was shown that predicted by numerical simulation pressure distribution at ejector wall fits well with experimental pressure distribution.
Słowa kluczowe
Rocznik
Tom
Strony
51--62
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
  • Białystok University of Technology, Faculty of Mechanical Engineering, Division of Heat Technology and Refrigeration
  • Białystok University of Technology, Faculty of Mechanical Engineering, Division of Heat Technology and Refrigeration
autor
  • Białystok University of Technology, Faculty of Mechanical Engineering, Division of Heat Technology and Refrigeration
  • Wroclaw University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Thermodynamics, Theory of Machines and Thermal Systems
Bibliografia
  • [1] Pridasawas W., Lundqvist P., Natural working fluids for a solar-driven ejector refrigeration system, Proceedings of the Eurotherm Seminar No. 72, Thermodynamics, Heat and Mass Transfer of Refrigeration Machines and Heat Pumps, 431-436, 2003.
  • [2] Butrymowicz D., Trela M., Karwacki J., Ochrymiuk T., Smierciew K., Investigation and modelling of ejector for air-conditioning system, Archives of Thermodynamics, 29, 27-40, 2008.
  • [3] Śmierciew K., Butrymowicz D., Karwacki J., Trela M., Modelling of ejection cycle for solar air- conditioning, Proceedings of the International Seminar on ejector/jet-pump technology and application, 25,2009.
  • [4] Zhu Y., Cai W., Wen C., Li Y., Numerical investigation of geometry parameters for design of high performance ejectors, Applied Thermal Engineering, 29, 898-905, 2009.
  • [5] Utomo T., Ji M., Kim P., Jeong H., Chung H., CFD analysis on the influence of converging duct angle on the steam ejector performance, Proceedings of the International Conference on Engineering Optimization EngOpt, 2008.
  • [6] Dvorak V., Shape optimization of axisymmetric ejector, Proceedings of the European Conference on Computational Fluid Dynamics, 2006.
  • [7] Eames I.W., Ablwaifa A.E., Petrenko V., Results of an experimental study of an advanced jet-pump refrigerator operating with R245fa, Applied Thermal Engineering, 27, 2833-2840, 2007.
  • [8] Varga S., Oliviera A.C., Diaconu B., Influence of geometrical factors on steam ejector performance-A numerical assessment, International Journal of Refrigeration, 32, 1694-1701, 2009.
  • [9] Butrymowicz D., Śmierciew K., Karwacki J., Gagan J., Experimental investigations of low-temperature driven ejection refrigeration cycle operating with isobutane, International Journal of Refrigeration, 39, 196-209, 2014.
  • [10] Hemidi A., Henry F., Leclaire S., Seynhaeve J.M, Bartosiewicz Y., CFD analysis of a supersonic air ejector. Part II: Relation between global operation and local flow features, Applied Thermal Engineering, 29, 2990-2998, 2009.
  • [11] Sriveerakul T., Aphornatana S., Chunnanond K., Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries, International Journal of Thermal Sciences, 46, 823-833, 2007.
  • [12] Yapici R., Experimental investigation of performance of vapour ejector refrigeration system using refrigerant R123, Energy Conversion and Management, 49, 953-961, 2008.
  • [13] Bartosiewicz Y., Aidoun Z., Desevoux P., Mercadier Y., CFD-Experiments Intergation in the evaluation of Six Turbulence Models for Supersonic Ejector Modeling, Proceedings of the Conference on the Integrating CFD and Experiments, 2003.
  • [14] Gagan J., Śmierciew K., Butrymowicz D., Karwacki J., Comparative study of turbulence models in application to gas ejectors, International Journal of Thermal Sciences, 78, 9-15, 2014.
  • [15] Menter F.R., Kuntz M., Langtry R., Ten Years of Industrial Experience with the SST Turbulence Model, In: Hanjalic K. et al., Turbulence, Heat and Mass Transfer, 2003.
  • [16] Kolar J., Dvorak V., Verification of k-omega SST turbulence model for supersonic internal flows, World Academy of Science, Engineering and Technology, 81, 262-266, 2011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a816ab5-e032-4acf-8913-051b7a6eea03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.