PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploiting gyroscopic effects for resonance elimination of an elastic rotor utilizing only one piezo actuator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A gyroscopic rotor exposed to unbalance and internal damping is controlled with an active piezoelectrical bearing in this paper. The used rotor test-rig is modelled using an FEM approach. The present gyroscopic effects are then used to derive a control strategy which only requires a single piezo actuator, while regular active piezoelectric bearings require two. Using only one actuator generates an excitation which contains an equal amount of forward and backward whirl vibrations. Both parts are differently amplified by the rotor system due to gyroscopic effects, which cause speed-dependent different eigenfrequencies for forward and backward whirl resonances. This facilitates eliminating resonances and stabilize the rotor system with only one actuator but requires two sensors. The control approach is validated with experiments on a rotor test-rig and compared to a control which uses both actuators.
Rocznik
Strony
art. no. e147060
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
autor
  • Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
  • Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
  • Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
Bibliografia
  • [1] R. Siva Srinivas, R. Tiwari, and C. Kannababu, “Application of active magnetic bearings in flexible rotordynamic systems – A state-of-the-art review,” Mech. Syst. Signal Proc., vol. 106, pp. 537–572, Jun. 2018, doi: 10.1016/j.ymssp.2018.01.010.
  • [2] M. Borsdorf, R.S. Schittenhelm, Zhentao Wang, J. Bos, and S. Rinderknecht, “Active damping of aircraft engine shafts using integral force feedback and piezoelectric stack actuators,” in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, Jul. 2013, pp. 1731–1736, doi: 10.1109/AIM.2013.6584347.
  • [3] R. Herzog, P. Buhler, C. Gahler, and R. Larsonneur, “Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings,” IEEE Trans. Control Syst. Technol., vol. 4, no. 5, pp. 580–586, Sep. 1996, doi: 10.1109/87.531924.
  • [4] J. Jungblut, J. Haas, and S. Rinderknecht, “Active vibration control of an elastic rotor by using its deformation as controlled variable,” Mech. Syst. Signal Proc., vol. 165, p. 108371, Feb. 2022, doi: 10.1016/j.ymssp.2021.108371.
  • [5] H. Balini, J. Witte, and C.W. Scherer, “Synthesis and implementation of gain-scheduling and LPV controllers for an AMB system,” Automatica, vol. 48, no. 3, pp. 521–527, Mar. 2012, doi: 10.1016/j.automatica.2011.08.061.
  • [6] B. Denkena and O. Gümmer, “Process stabilization with an adaptronic spindle system,” Prod. Eng., vol. 6, no. 4-5, pp. 485–492, Sep. 2012, doi: 10.1007/s11740-012-0397-3.
  • [7] C.R. Knospe, “Active magnetic bearings for machining applications,” Control Eng. Practice, vol. 15, no. 3, pp. 307–313, Mar. 2007, doi: 10.1016/j.conengprac.2005.12.002.
  • [8] Y.H. Guan, T.C. Lim, and W. Steve Shepard, “Experimental study on active vibration control of a gearbox system,” J. Sound Vib., vol. 282, no. 3-5, pp. 713–733, Apr. 2005, doi: 10.1016/j.jsv.2004.03.043.
  • [9] R. Köhler and S. Rinderknecht, “A phenomenological approach to temperature dependent piezo stack actuator modeling,” Sens. Actuator A-Phys., vol. 200, pp. 123–132, Oct. 2013, doi: 10.1016/j.sna.2012.10.003
  • [10] A.B. Palazzolo, R.R. Lin, R.M. Alexander, A.F. Kascak, and J. Montague, “Test and theory for piezoelectric actuator-active vibration control of rotating machinery,” J. Vib. Acoust., vol. 113, no. 2, p. 167, 1991, doi: 10.1115/1.2930165.
  • [11] R.S. Schittenhelm, Z. Wang, B. Riemann, and S. Rinderknecht, “State feedback in the context of a gyroscopic rotor using a disturbance observer,” Eng. Lett., vol. 21, no. 1, pp. 44–51, 2013.
  • [12] F.B. Becker, M.A. Sehr, and S. Rinderknecht, “Vibration isolation for parameter-varying rotor systems using piezoelectric actuators and gain-scheduled control,” J. Intell. Mater. Syst. Struct., vol. 28, no. 16, pp. 2286–2297, Sep. 2017, doi: 10.1177/1045389X17689933.
  • [13] Y. Suzuki and Y. Kagawa, “Vibration control and sinusoidal external force estimation of a flexible shaft using piezoelectric actuators,” Smart Mater. Struct., vol. 21, no. 12, Dec. 2012, doi: 10.1088/0964-1726/21/12/125006.
  • [14] J. Jungblut, C. Fischer, and S. Rinderknecht, “Active vibration control of a gyroscopic rotor using experimental modal analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e138090, 2021, doi: 10.24425/bpasts.2021.138090.
  • [15] J. Jungblut, D. Franz, C. Fischer, and S. Rinderknecht, “Supplementary data: Exploiting gyroscopic effects for resonance elimination of an elastic rotor utilizing only one piezo actuator,” 2022, doi:10.48328/tudatalib-968.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a7a50df-5d75-4288-86fb-0da604d7dc9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.