Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
52--54
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
autor
- Salon optyczny OPTIC CAFE, Poznań
- Akademickie Centrum Kształcenia Optometrystów, Wydział Fizyki, Uniwersytet Warszawski
- Akademickie Centrum Kształcenia Optometrystów, Wydział Fizyki, Uniwersytet Warszawski
autor
- Akademickie Centrum Kształcenia Optometrystów, Wydział Fizyki, Uniwersytet Warszawski
Bibliografia
- 1. T. R. Fricke et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: Systematic review, meta-analysis and modelling. Br. J. Ophthalmol 2018; 102, 855–862, DOI: 10.1136/bjophthalmol-2017-311266
- 2. A. E. G. Haarman et al. The complications of myopia: A review and meta-analysis. Invest. Ophthalmol & Vis. Sci 2020; 61, 49, DOI: 10.1167/iovs.61.4.49
- 3. The impact of myopia and high myopia. https://www.iapb.org/learn/resources/the-impact-of-myopia-and-high-myopia/ (dostęp 19/11/2024)
- 4. World report on vision. https://www.who.int/publications/i/item/9789241516570 (dostęp 19/11/2024)
- 5. J. Liang et al. Global prevalence, trend and projection of myopia in children and adolescents from 1990 to 2050: A comprehensive systematic review and meta-analysis. Br. J. Ophthalmol 2024; DOI: 10.1136/bjo-2024-325427
- 6. K. K. Nischal. Government instituted public health policy for myopia control in schools — the overlooked variable in myopia prevention interventions? Eye 2024, 1–3, DOI: 10.1038/s41433-024-03406-5
- 7. A. Ha et al. Efficacy and safety of 8 atropine concentrations for myopia control in children: A network meta-analysis. Ophthalmology 2022; 129, 322–333, DOI: 10.1016/j.ophtha.2021.10.016
- 8. Y. Yu, J. Liu. The effect of 0.01% atropine and orthokeratology on ocular axial elongation for myopia children: A meta-analysis (a PRISMA-Compliant Article). Medicine (Baltimore) 2022; 101, e29191, DOI: 10.1097/MD.0000000000029191
- 9. Y. C. Lee et al. Effect of Orthokeratology on Myopia Progression: Twelve-Year Results of a Retrospective Cohort Study. BMC Ophthalmol 2017; 17, 243, DOI: 10.1186/s12886-017-0639-4
- 10. T. Hiraoka. Myopia control with orthokeratology: A review. Eye Contact Lens 2022; 48, 100, DOI: 10.1097/ICL.0000000000000867
- 11. C. S. Y. Lam et al. Long-term myopia control effect and safety in children wearing DIMS spectacle lenses for 6 years. Sci. Rep 2023; 13, 5475, DOI: 10.1038/s41598-023-32700-7
- 12. P. Nucci et al. A comparison of myopia control in european children and adolescents with defocus incorporated multiple segments (DIMS) spectacles, atropine, and combined dims/atropine. PLOS ONE 2023; 18, e0281816, DOI: 10.1371/journal.pone.0281816
- 13. A. M. G.del Valle et al. Efficacy and safety of a soft contact lens to control myopia progression. Clin. Exp. Optom 2021; 104, 14–21, DOI: 10.1111/cxo.13077
- 14. X. Cheng et al. Randomized trial of soft contact lenses with novel ring focus for controlling myopia progression. Ophthalmol. Sci 2022; 3, 100232, DOI: 10.1016/j.xops.2022.100232
- 15. S. Xiong et al. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmol. (Copenh.) 2017; 95, 551–566, DOI: 10.1111/aos.13403
- 16. M. Zhu et al. Safety of repeated low-level red-light therapy for children with myopia. Photodiagnosis Photodyn. Ther 2024; 47, 104198, DOI: 10.1016/j.pdpdt.2024.104198
- 17. Y. Xu et al. Repeated low-level red light therapy for myopia control in high myopia children and adolescents: a randomized clinical trial. Ophthalmology 2024; 131, 1314–1323, DOI: 10.1016/j.ophtha.2024.05.023
- 18. D. Czepita et al. Prevalence of myopia and hyperopia in a population of polish schoolchildren. Ophthalmic Physiol. Opt 2007; 27, 60–65, DOI: 10.1111/j.1475-1313.2006.00419.x
- 19. M. i D. Czepita et al. The influence of environmental factors on the prevalence of myopia in poland. J. Ophthalmol 2017; 2017, 5983406, DOI: 10.1155/2017/5983406
- 20. M. M. Durajczyk. Evaluation of the prevalence of refractive defects and ocular function in a group of 1518 children aged 8 years in northwestern poland−a retrospective study. J. Clin. Med 2023; 12, 2880, DOI: 10.3390/jcm12082880
- 21. P. Demir et al. Incidence of myopia in swedish schoolchildren: A longitudinal study. Ophthalmic Physiol. Opt 2024; 44, 1301–1308, DOI: 10.1111/opo.13359
- 22. Z. Zong et al. The association between screen time exposure and myopia in children and adolescents: A meta-analysis. BMC Public Health 2024; 24, 1625, DOI: 10.1186/s12889-024-19113-5
- 23. D. Zhu et al. Pre- and Postcycloplegic Refractions in Children and Adolescents. PLOS ONE 2016; 11, e0167628, DOI: 10.1371/journal.pone.0167628
- 24. S. Xiong et al. Comparison of refractive measures of three autorefractors in children and adolescents. Optometry & Vis. Sci 2017; 94, 894–902, DOI: 10.1097/OPX.0000000000001113
- 25. E. Piwowarczyk, M. Wojczyk. Near visual work and low physical activity as the main risk factors for myopia. Med. Śr. 2023; 25, 77–81, DOI: 10.26444/ms/160100
- 26. S. Biswas et al. The influence of the environment and lifestyle on myopia. J. Physiol. Anthropol 2024; 43, 7, DOI: 10.1186/s40101-024-00354-7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a79f4d4-2ae5-4fa7-ae1d-7bb5b0ad149b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.