PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-photon time-of-flight MLEM application for the positronium imaging in J-PET

Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
EN
Abstrakty
EN
We develop a positronium imaging method for the Jagiellonian PET (J-PET) scanners based on the timeof-flight maximum likelihood expectation maximisation (TOF MLEM). The system matrix elements are calculated on-the-fly for the coincidences comprising two annihilation and one de-excitation photons that originate from the ortho-positronium (o-Ps) decay. Using the Geant4 library, a Monte Carlo simulation was conducted for four cylindrical 22Na sources of β+ decay with diverse o-Ps mean lifetimes, placed symmetrically inside the two JPET prototypes. The estimated time differences between the annihilation and the positron emission were aggregated into histograms (one per voxel), updated by the weights of the activities reconstructed by TOF MLEM. The simulations were restricted to include only the o-Ps decays into back-to-back photons, allowing a linear fitting model to be employed for the estimation of the mean lifetime from each histogram built in the log scale. To suppress the noise, the exclusion of voxels with activity below 2% - 10% of the peak was studied. The estimated o-Ps mean lifetimes were consistent with the simulation and distributed quasi-uniformly at high MLEM iterations. The proposed positronium imaging technique can be further upgraded to include various correction factors, as well as be modified according to realistic o-Ps decay models.
Słowa kluczowe
Rocznik
Strony
135--143
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
  • INFN, Laboratori Nazionali di Frascati, Frascati, Italy
Bibliografia
  • [1] Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clinics. 2020 oct;15(4):439-452. doi:10.1016/j.cpet.2020.06.009.
  • [2] Nordberg A, Rinne JO, Kadir A, Långström B. The use of PET in Alzheimer disease. Nature Reviews Neurology. 2010 feb;6(2):78-87. doi:10.1038/nrneurol.2009.217.
  • [3] Jean YC, Mallon PE, Schrader DM. Principles and Applications of Positron and Positronium Chemistry. WORLD SCIENTIFIC; 2003. doi:10.1142/5086.
  • [4] Harpen MD. Positronium: Review of symmetry, conserved quantities and decay for the radiological physicist. Medical Physics. 2003 dec;31(1):57-61. doi:10.1118/1.1630494.
  • [5] Chen HM, van Horn JD, Jean YC. Applications of Positron Annihilation Spectroscopy to Life Science. Defect and Diffusion Forum. 2012 sep;331:275-293. doi:10.4028/www.scientific.net/DDF.331.275.
  • [6] Moskal P. Positronium Imaging. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE; 2019. p. 1-3. doi:10.1109/NSS/MIC42101.2019.9059856.
  • [7] Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nature Reviews Cancer. 2004 jun;4(6):437-447. doi:10.1038/nrc1367.
  • [8] Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nature Reviews Clinical Oncology. 2012 dec;9(12):674-687. doi:10.1038/nrclinonc.2012.171.
  • [9] Moskal P, Stępień EŁ. Positronium as a biomarker of hypoxia. Bio-Algorithms and Med-Systems. 2022 jan;17(4):311-319. doi:10.1515/bams-2021-0189.
  • [10] Jasińska B, Zgardzińska B, Chołubek G, Gorgol M, Wiktor K, Wysogląd K, et al. Human Tissues Investigation Using PALS Technique. Acta Physica Polonica B. 2017;48(10):1737. doi:10.5506/APhysPolB.48.1737.
  • [11] Jasińska B, Zgardzińska B, Chołubek G, Pietrow M, Gorgol M, Wiktor K, et al. Human Tissue Investigations Using PALS Technique - Free Radicals Influence. Acta Physica Polonica A. 2017 nov;132(5):1556-1559. doi:10.12693/APhysPolA.132.1556.
  • [12] Zgardzińska B, Chołubek G, Jarosz B, Wysogląd K, Gorgol M, Goździuk M, et al. Studies on healthy and neoplastic tissues using positron annihilation lifetime spectroscopy and focused histopathological imaging. Scientific Reports. 2020 dec;10(1):11890. doi:10.1038/s41598-020-68727-3.
  • [13] Moskal P, Kubicz E, Grudzień G, Czerwiński E, Dulski K, Leszczyński B, et al. Developing a Novel Positronium Biomarker for Cardiac Myxoma Imaging. bioRxiv. 2021. doi:10.1101/2021.08.05.455285.
  • [14] Stepien E, Kubicz E, Grudzien G, Dulski K, Leszczynski B, Moskal P. Positronium life-time as a new approach for cardiac masses imaging. European Heart Journal. 2021 oct;42(Supplement_1). doi:10.1093/eurheartj/ehab724.3279.
  • [15] Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Science Advances. 2021 oct;7(42). doi:10.1126/sciadv.abh4394.
  • [16] Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2014 nov;764:317-321. doi:10.1016/j.nima.2014.07.052.
  • [17] Raczyński L, Moskal P, Kowalski P, Wiślicki W, Bednarski T, Białas P, et al. Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2014 nov;764:186-192. doi:10.1016/j.nima.2014.07.032.
  • [18] Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Physics in Medicine & Biology. 2016;61(5):2025-2047. doi:10.1088/0031-9155/61/5/2025.
  • [19] Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-PET: A New Technology for the Whole-body PET Imaging. Acta Physica Polonica B. 2017;48(10):1567. doi:10.5506/APhysPolB.48.1567.
  • [20] Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in orthopositronium decays with positronium annihilation tomography. Nature Communications. 2021 dec;12(1):5658. doi:10.1038/s41467-021-25905-9.
  • [21] Gajos A, Kamińska D, Czerwiński E, Alfs D, Bednarski T, Białas P, et al. Trilateration-based reconstruction of ortho-positronium decays into three photons with the JPET detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2016 may;819:54-59. doi:10.1016/j.nima.2016.02.069.
  • [22] Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the JPET tomograph. Physics in Medicine & Biology. 2019 mar;64(5):055017. doi:10.1088/1361-6560/aafe20.
  • [23] Moskal P, Kisielewska D, Shopa RY, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2 γpositronium imaging with the total-body PET scanners. EJNMMI Physics. 2020 dec;7(1):44. doi:10.1186/s40658- 020-00307-w.
  • [24] Kowalski P, Wiślicki W, Shopa RY, Raczyński L, Klimaszewski K, Curcenau C, et al. Estimating the NEMA characteristics of the J-PET tomograph using the GATE package. Physics in Medicine & Biology. 2018 aug;63(16):165008. doi:10.1088/1361-6560/aad29b.
  • [25] Moskal P, Stępień EŁ. Perspectives on translation of positronium imaging into clinics. Frontiers in Physics. 2022 sep;10. doi:10.3389/fphy.2022.969806.
  • [26] Huesman RH, Klein GJ, Moses WW, Jinyi Qi, Reutter BW, Virador PRG. List-mode maximum-likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling. IEEE Transactions on Medical Imaging. 2000 may;19(5):532-537. doi:10.1109/42.870263.
  • [27] Qi J, Huang B. Positronium Lifetime Image Reconstruction for TOF PET. IEEE Transactions on Medical Imaging. 2022 oct;41(10):2848–2855. doi:10.1109/TMI.2022.3174561.
  • [28] Zhu Z, Kao CM, Huang HH. A statistical reconstruction algorithm for positronium lifetime imaging using time-of-flight positron emission tomography. 2022 jun. Available from: http://arxiv.org/abs/2206.06463.
  • [29] Shopa RY. High-quality iterative TOF MLEM reconstruction for short scans in total-body J-PET. RAP Conference Proceedings. 2021;6:115-120. doi:10.37392/RapProc.2021.24.
  • [30] Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003 jul;506(3):250-303. doi:10.1016/S0168-9002(03)01368-8.
  • [31] Moskal P, Jasińska B, St¸epień EŁ, Bass SD. Positronium in medicine and biology. Nature Reviews Physics. 2019 sep;1(9):527-529. doi:10.1038/s42254-019-0078-7.
  • [32] Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. Journal of computer assisted tomography. 1984 apr;8(2):306-16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6608535.
  • [33] Jacobs F, Sundermann E, De Sutter B, Christiaens M, Lemahieu I. A Fast Algorithm to Calculate the Exact Radiological Path Through a Pixel Or Voxel Space. Journal of Computing and Information Technology. 1998;6(1):89-94. Available from: https://hrcak.srce.hr/file/221195. [references list]
Uwagi
Opublikowane przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a77455d-8ea5-42ec-a174-1f37e66cded8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.