PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Long-term spatio-temporal trends in atmospheric aerosols and trace gases over Pakistan using remote sensing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of today's most important environmental problems is air pollution augmentation. Air pollution is getting worse over time and hurts human health. For the current study, various polar orbiting satellites were utilized to collect data on PM2.5, SO2, AOD, CO, and ozone over Pakistan between January 2005 and December 2021. According to the spatial distribution results, these characteristics have high values throughout central Punjab, western Baluchistan, central Sindh, and Khyber Pakhtunkhwa. The seasonal variation in PM2.5, SO2, AOD, CO, and ozone was calculated using monthly data. The greatest value for PM2 5 is 8.7 X 10-8 kg/m3 during the monsoon season, while the highest value for SO2 is 1.4 X 10-5 kg/m2 during the winter. Over Punjab, Sindh, Baluchistan, KPK, and Gilgit, AOD was between 0.7 and > 1.0, CO was 127.2 ppb, and ozone was 330.7 DU. Furthermore, we create correlation maps of AOD, CO, SO2, PM2.5, and ozone and evaluate their relationship of high and low values across Pakistan. We looked into the 0.99 correlation between AOD and PM2.5, the strongest ever recorded. Despite this, we look at time series graphs to show the rising and falling pattern of these parameters from January 2005 to December 2021. We also used tables to determine the relative change in Multan, Lahore, Karachi, Peshawar, Quetta, Rawalpindi, Faisalabad, Hyderabad, Gujranwala, and Abbottabad in Pakistan from January 2005 to December 2021.
Słowa kluczowe
Czasopismo
Rocznik
Strony
489--508
Opis fizyczny
Bibliogr. 67 poz.
Twórcy
  • University of Management and Technology, Lahore, Pakistan
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
  • Department Political Science, University of Management and Technology, Lahore, Pakistan
autor
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
  • Department of Space Science, University of the Punjab, Lahore, Pakistan
autor
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
Bibliografia
  • 1. Iqa (2020) (Report) World Air Quality Report. 2020 World Air Quality
  • 2. Report, August, 1-35. https://www.iqair.com/world-most-pollu ted-cities/world-air-quality-report-2019-en.pdf
  • 3. Alam K, Iqbal MJ, Blaschke T, Qureshi S, Khan G (2010) Monitoring spatio-temporal variations in aerosols and aerosol-cloud interactions over Pakistan using MODIS data. Adv Space Res 46(9):1162-1176. https://doi.org/10.1016/J.ASR.2010.06.025
  • 4. Alam K, Trautmann T, Blaschke T, Majid H (2012) Aerosol optical and radiative properties during summer and winter seasons over Lahore and Karachi. Atmos Environ 50:234-245. https://doi.org/ 10.1016/J.ATMOSENV.2011.12.027
  • 5. Ali A, Shujaat C, Dicle A, Fayyaz O, Ghulam A, Sargani R (2022) The role of climatic changes and financial development to the ASEAN agricultural output: a novel long-run evidence for sustainable production. Environ Sci Pollut Res. https://doi.org/10.1007/ s11356-022-23144-z
  • 6. Ali G, Bao Y, Ullah W, Ullah S, Guan Q, Liu X, Li L, Lei Y, Li G, Ma J (2020) Spatiotemporal trends of aerosols over urban regions in Pakistan and their possible links to meteorological parameters. Atmosphere 11(3):214. https://doi.org/10.3390/atmos11030306
  • 7. Andre L, Boissiere J, Reboul C, Perrier R, Zalvidea S, Meyer G, Thireau J, Tanguy S, Bideaux P, Hayot M, Boucher F, Obert P, Cazorla O, Richard S (2012) Carbon monoxide pollution promotes cardiac remodeling and ventricular arrhythmia in healthy rats. Science 181(6):587-595. https://doi.org/10.1164/RCCM. 200905-0794OC
  • 8. Aumann HH, Chahine MT, Gautier C, Goldberg MD, Kalnay E, McMillin LM, Revercomb H, Rosenkranz PW, Smith WL, Staelin DH, Strow LL, Susskind J (2003) AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens 41(2):253-264
  • 9. Bilal M, Mhawish A, Nichol JE, Qiu Z, Nazeer M, Ali MA, de Leeuw G, Levy RC, Wang Y, Chen Y, Wang L, Shi Y, Bleiweiss MP, Mazhar U, Atique L, Ke S (2021) Air pollution scenario over Pakistan: Characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases. Remote Sens Environ 264:112617. https://doi.org/10.1016/J.RSE. 2021.112617
  • 10. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, Deangelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118(11):5380-5552. https://doi.org/10.1002/ jgrd.50171
  • 11. Bruhn D, Albert KR, Mikkelsen TN, Ambus P (2013) UV-induced carbon monoxide emission from living vegetation. Biogeosciences 10(12):7877-7882. https://doi.org/10.5194/BG-10-7877-2013
  • 12. Chen K, Guo H, Hu J, Kota S, Deng W, Ying Q, Myllyvirta L, Dahiya S, Zhang H (2019) Projected air quality and health benefits from future policy interventions in India. Resour Conserv Recycl 142:232-244. https://doi.org/10.1016/J.RESCONREC.2018.12. 008
  • 13. Colarco P, Da Silva A, Chin M, Diehl T (2010) Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J Geophys Res Atmos. https://doi.org/10.1029/2009JD012820
  • 14. Deeter MN, Edwards DP, Francis GL, Gille JC, Martínez-Alonso S, Worden HM, Sweeney C (2017) A climate-scale satellite record for carbon monoxide: The MOPITT Version 7 product. Atmos Meas Tech 10(7):2533-2555. https://doi.org/10.5194/ AMT-10-2533-2017
  • 15. Deeter MN, Emmons LK, Francis GL, Edwards DP, Gille JC, Warner JX, Khattatov B, Ziskin D, Lamarque JF, Ho SP, Yudin V, Attié JL, Packman D, Chen J, Mao D, Drummond JR (2003) Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J Geophys Res Atmos 108(14):458. https://doi.org/10.1029/2002JD003186
  • 16. Deng X, Feng N, Zheng M, Ye X, Lin H, Yu X, Gan Z, Fang Z, Zhang H, Gao M, Zheng Z, Yu H, Ding W, Qian B (2017) PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochimica et Biophysica Acta (BBA) 1861(2):112-125. https:// doi.org/10.1016/J.BBAGEN.2016.11.009
  • 17. Duncan BN, Yoshida Y, Olson JR, Sillman S, Martin RV, Lamsal L, Hu Y, Pickering KE, Retscher C, Allen DJ, Crawford JH (2010) Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmos Environ 44(18):2213-2223. https://doi.org/10.1016/J.ATMOSENV. 2010.03.010
  • 18. Jabeen Z, Khokhar MF (2019) Extended database of SO2 column densities over Pakistan by exploiting satellite observations. Atmos Pollut Res 10(3):997-1003. https://doi.org/10.1016/J.APR.2019. 01.009
  • 19. Jeong U, Hong H, Sharifi A, Feng C, Yang J (2021) Comparison of total column and surface mixing ratio of carbon monoxide derived from the TROPOMI/sentinel-5 precursor with in-situ measurements from extensive ground-based network over South Korea. Remote Sens 13(19):3987. https://doi.org/10.3390/RS13193987
  • 20. Jiang Z, Worden JR, Worden H, Deeter M, Jones DBA, Arellano AF, Henze DK (2017) A 15-year record of CO emissions constrained by MOPITT CO observations. Atmos Chem Phys 17(7):4565-4583. https://doi.org/10.5194/ACP-17-4565-2017
  • 21. Katsouyanni K, Touloumi G, Spix C, Schwarte J, Balducci F, Medina S, Rossi G, Wojtyniak B, Sunyer J, Bacharova L, Schouten JP, Ponka A, Anderson HR (1997) Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. BMJ. https://doi.org/10.1136/bmj.314.7095.1658
  • 22. Kaufman YJ, Koren I, Remer LA, Tanré D, Ginoux P, Fan S (2005) Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res d: Atmos 110(10):1-16. https://doi.org/10.1029/2003JD004436
  • 23. Khattak P, Khokhar MF, Khan SA (2014) Trans-boundary volcanic SO2 detected over pakistan from satellite observations during the time period 2004-2012. Aerosol Air Qual Res 14(6):1543-1557. https://doi.org/10.4209/aaqr.2013.12.0361
  • 24. Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6(11):2989-3034. https://doi. org/10.5194/amt-6-2989-2013
  • 25. Li M, Karu E, Brenninkmeijer C, Fischer H, Lelieveld J, Williams J (2018) Tropospheric OH and stratospheric OH and Cl concentrations determined from CH4, CH3Cl, and SF6 measurements. NPJ Clim Atmos Sci 1(1):1-7. https://doi.org/10.1038/ s41612-018-0041-9
  • 26. Liu Q, Xu C, Ji G, Liu H, Shao W, Zhang C, Gu A, Zhao P (2017) Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies. J Biomed Res 31(2):130-142. https://doi.org/10.7555/JBR.31.20160071
  • 27. Marseglia G, Vasquez-Pena BF, Medaglia CM, Chacartegui R (2020) Alternative fuels for combined cycle power plants: an analysis of options for a location in India. Sustainability 12(8):3330. https:// doi.org/10.3390/SU12083330
  • 28. Martellini T, Giannoni M, Lepri L, Katsoyiannis A, Cincinelli A (2012) One year intensive PM2.5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environ Pollut 164:252-258. https://doi.org/10.1016/J.ENVPOL.2011.12.040
  • 29. Mhawish A, Banerjee T, Sorek-Hamer M, Bilal M, Lyapustin AI, Chatfield R, Broday DM (2020) Estimation of high-resolution PM2.5 over the Indo-Gangetic plain by fusion of satellite data, meteorology, and land use variables. Environ Sci Technol 54(13):7891-7900
  • 30. Mhawish A, Banerjee T, Sorek-Hamer M, Lyapustin A, Broday DM, Chatfield R (2019) Comparison and evaluation of MODIS Multiangle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens Environ 224:12-28. https://doi.org/10.1016/J.RSE.2019.01.033
  • 31. Mhawish A, Sorek-Hamer M, Chatfield R, Banerjee T, Bilal M, Kumar M, Sarangi C, Franklin M, Chau K, Garay M, Kalashnikova O (2021) Aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000-2019). Remote Sens Environ 259:112410. https://doi.org/10.1016/J. RSE.2021.112410
  • 32. Mylona S (1996) Sulphur dioxide emissions in Europe 1880-1991 and their effect on sulphur concentrations and depositions. Tel-lus B 48(5):662-689. https://doi.org/10.1034/J.1600-0889.1996. T01-2-00005.X
  • 33. Qayyum F, Mehmood U, Tariq S, Haq Z, Nawaz H (2021) Particulate matter (PM2.5) and diseases: an autoregressive distributed lag (ARDL) technique. Environ Sci Pollut Res 28(47):67511-67518. https://doi.org/10.1007/s11356-021-15178-6
  • 34. Qayyum F, Tariq S, ul-Haq Z, Mehmood U, Zeydan Ö (2022) Air pollution trends measured from MODIS and TROPOMI: AOD and CO over Pakistan. J Atmos Chem 79(3):199-217. https://doi.org/ 10.1007/s10874-022-09436-1
  • 35. Ramachandran S, Kedia S, Srivastava R (2012) Aerosol optical depth trends over different regions of India. Atmos Environ 49:338-347. https://doi.org/10.1016/J.ATMOSENV.2011.11.017
  • 36. Randles CA, da Silva AM, Buchard V, Colarco PR, Darmenov A, Govindaraju R, Smirnov A, Holben B, Ferrare R, Hair J, Shinozuka Y, Flynn CJ (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation. J Clim 30(17):6823-6850. https://doi.org/10.1175/ JCLI-D-16-0609.1
  • 37. Ravishankara AR (2005) Chemistry-climate coupling: the importance of chemistry in climate issues. Faraday Discuss 130:9-26. https:// doi.org/10.1039/B509603K
  • 38. Ravishankara AR, Rudich Y, Pyle JA (2015) Role of chemistry in earth’s climate. Chem Rev 115(10):3679-3681
  • 39. Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62(4):947-973. https://doi.org/10.1175/ JAS3385.1
  • 40. Sadiq N, Qureshi S (2010) Content analysis versus level of objectivity: the nuclear proliferation issue in Pakistan and its coverage by leading newspapers. Int J Inter Soc Sci 5:41
  • 41. Saleh I, Abedi S, Abedi S, Bastani M, Beman E (2021) Developing a model to predict air pollution (case study: Tehran City). J Environ Health Sci Eng 19(1):71-80. https://doi.org/10.1007/ S40201-020-00582-W
  • 42. Satheesh SK, Krishna Moorthy K (2005) Radiative effects of natural aerosols: a review. Atmos Environ 39(11):2089-2110. https://doi. org/10.1016/J.ATMOSENV.2004.12.029
  • 43. Shahid MZ, Liao H, Li J, Shahid I, Lodhi A, Mansha M (2015) Seasonal variations of aerosols in Pakistan: contributions of domestic anthropogenic emissions and transboundary transport. Aerosol Air Qual Res 15(4):1580-1600. https://doi.org/10.4209/AAQR. 2014.12.0332
  • 44. Sharif F, Alam K, Afsar S (2015) Spatio-temporal distribution of aerosol and cloud properties over sindh using MODIS satellite data
  • 45. and a HYSPLIT model. Aerosol Air Qual Res 15(2):657-672. https://doi.org/10.4209/AAQR.2014.09.0200
  • 46. Sharma AR, Kharol SK, Badarinath KVS, Singh D (2010) Impact of agriculture crop residue burning on atmospheric aerosol loading: a study over Punjab State, India. Annales Geophysicae 28(2):367-379. https://doi.org/10.5194/ANGEO-28-367-2010
  • 47. Silver B, Conibear L, Reddington CL, Knote C, Arnold SR, Sprack-len DV (2020) Pollutant emission reductions deliver decreased PM2.5-caused mortality across China during 2015-2017. Atmos Chem Phys 20(20):11683-11695
  • 48. Spinei E, Carn SA, Krotkov NA, Mount GH, Yang K, Krueger A (2010) Validation of ozone monitoring instrument SO2 measurements in the Okmok volcanic cloud over Pullman, WA, July 2008. J Geophys Res Atmos 115(18):1-14. https://doi.org/10. 1029/2009JD013492
  • 49. Susskind J, Susskind J, Barnet C, Blaisdell J (2003) Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data under cloudy conditions. IEEE Trans Geosci Remote Sens 5:390-409
  • 50. Tang W, Arellano AF, Gaubert B, Miyazaki K, Worden HM (2019) Satellite data reveal a common combustion emission pathway for major cities in China. Atmos Chem Phys 19(7):4269-4288. https://doi.org/10.5194/ACP-19-4269-2019
  • 51. Tang W, Worden HM, Deeter MN, Edwards DP, Emmons LK, Martínez-Alonso S, Gaubert B, Buchholz RR, DIskin GS, DIckerson RR, Ren X, He H, Kondo Y (2020) Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions. Atmos Meas Tech 13(3):1337-1356. https://doi.org/10.5194/AMT-13-1337-2020
  • 52. Tariq S, Nawaz H, Ul-Haq Z, Mehmood U (2021) Investigating the relationship of aerosols with enhanced vegetation index and meteorological parameters over Pakistan. Atmos Pollut Res 12(6):101080. https://doi.org/10.1016/J.APR.2021.101080
  • 53. Tariq S, Qayyum F, Ul-Haq Z, Mehmood U (2022) Long-term spatiotemporal trends in aerosol optical depth and its relationship with enhanced vegetation index and meteorological parameters over South Asia. Environ Sci Pollut Res 29(20):30638-30655. https:// doi.org/10.1007/s11356-021-17887-4
  • 54. Tariq S, Ul-Haq Z (2018) Ground-based remote sensing of aerosol properties over a coastal megacity of Pakistan. Adv Meteorol. https://doi.org/10.1155/2018/3582191
  • 55. Ukhov A, Mostamandi S, Da Silva A, Flemming J, Alshehri Y, Shevchenko I, Stenchikov G (2020) Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations. Atmos Chem Phys 20(15):9281-9310. https://doi.org/10.5194/ACP-20-9281-2020
  • 56. Ul-Haq Z, Ramzan Z, Tariq S, Batool SA, Ali M, Sami J (2018) Comparison of total ozone column observations from space-borne ozone monitoring instrument with ground-based dobson ozone spectrophotometer measurements at an urban location in indo-gangetic basin. Int J Remote Sens 39(2):544-564. https://doi.org/ 10.1080/01431161.2017.1387306
  • 57. Ul-Haq Z, Rana AD, Ali M, Mahmood K, Tariq S, Qayyum Z (2015a) Carbon monoxide (CO) emissions and its tropospheric variability over Pakistan using satellite-sensed data. Adv Space Res 56(4):583-595. https://doi.org/10.1016/j.asr.2015.04.026
  • 58. ul-Haq Z, Tariq S, Ali M (2017) Spatiotemporal patterns of correlation between atmospheric nitrogen dioxide and aerosols over South Asia. Meteorol Atmos Phys 129(5):507-527. https://doi.org/10. 1007/S00703-016-0485-6/TABLES/4
  • 59. Ul-Haq Z, Tariq S, Ali M (2015) Tropospheric NO2 trends over south Asia during the last decade (2004-2014) using OMI Data. Adv Meteorol. https://doi.org/10.1155/2015/959284
  • 60. Wang Z, Liu Y, Hu M, Pan X, Shi J, Chen F, He K, Koutrakis P, Christiani DC (2013) Acute health impacts of airborne particles estimated from satellite remote sensing. Environ Int 51:150-159. https://doi.org/10.1016/J.ENVINT.2012.10.011
  • 61. Wang Z, Zhao J, Xu J, Jia M, Li H, Wang S (2019) Influence of straw burning on urban air pollutant concentrations in Northeast China. Int J Environ Res Public Health. https://doi.org/10.3390/IJERP H16081379
  • 62. Wei J, Huang W, Li Z, Xue W, Peng Y, Sun L, Cribb M (2019) Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens Environ 231:111221. https://doi.org/10.1016/j.rse.2019.111221
  • 63. Wespes C, Hurtmans DK, Emmons L, Safieddine S, Clerbaux C, Edwards DP, Coheur PF (2016) Ozone variability in the troposphere and the stratosphere from the first 6 years of IASI observations (2008-2013). Atmos Chem Phys 16(9):5721-5743. https:// doi.org/10.5194/ACP-16-5721-2016
  • 64. Xue T, Liu J, Zhang Q, Geng G, Zheng Y, Tong D, Liu Z, Guan D, Bo Y, Zhu T, He K, Hao J (2019) Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013-2017. Sci China Earth Sci 62(12):1847-1856. https://doi.org/10.1007/ S11430-018-9348-2
  • 65. Zhang X, Liu J, Han H, Zhang Y, Jiang Z, Wang H, Meng L, Li YC, Liu Y (2020) Satellite-observed variations and trends in carbon monoxide over Asia and their sensitivities to biomass burning. Remote Sens 12(5):830. https://doi.org/10.3390/RS12050830
  • 66. Zheng B, Chevallier F, Ciais P, Yin Y, Deeter MN, Worden HM, Wang Y, Zhang Q, He K (2018) Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ Res Lett 13(4):044007. https://doi.org/10.1088/1748-9326/AAB2B3
  • 67. Zheng B, Chevallier F, Yin Y, Ciais P, Fortems-Cheiney A, Deeter MN, Parker RJ, Wang Y, Worden HM, Zhao Y (2019) Global atmospheric carbon monoxide budget 2000-2017 inferred from multispecies atmospheric inversions. Earth Syst Sci Data 11(3):1411-1436. https://doi.org/10.5194/ESSD-11-1411-2019
Uwagi
Korekta artykułu w Acta Geophysica Vol. 72, no. 1/2024. Nr DOI korekty: 10.1007/s11600-023-01173-7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a763531-ad5e-4f25-8efc-2291e840ae21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.