PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical optimization of stress relieving parameters on closed cell aluminium foam using central composite design

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This study concerns about the influence of stress relieving parameters on the hardness of closed cell aluminium foam using central composite design. Design/methodology/approach: The responses of three stress relieving parameters: heating temperature, holding time and stabilization temperature are studied and analysed through 20 experimental runs designed according to central composite design. The results of microhardness test corresponded to the microstructural evaluation of closed-cell aluminium foam using optical microscope. Analysis of Variance (ANOVA) technique is employed to study the significance of each parameter on the microhardness property. In this process the design has five levels for each parameter. The stress relieving process of the samples were performed using a vacuum furnace. The hardness test was conducted using a micro hardness tester LM247AT and the microstructure of the samples were obtained using optical microscopy technique. Findings: It was found that the highest value of hardness of 192.78 HV was obtained when the stress relieving process is set with the following parameters: heating (500°C); holding time (120 min) and stabilization temperature (450°C). Since higher heating temperature and longer holding time produce sample with larger grain size and has an adverse effect on the hardness value. Research limitations/implications: Liquid metal and powder metallurgical processing still produces a non-uniform and poorly reproducible cellular structure. This cellular structure demonstrates poor quality difference on decomposition and melting temperature, called anisotropic early expansion. Originality/value: To improve the poor cellular structure quality, stress relieving method is proposed in this study. Stress relieving method can improve the microstructure of the material.
Rocznik
Strony
55--63
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Mechanical Engineering Department, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
autor
  • Mechanical Engineering Department, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
autor
  • Mechanical Engineering Department, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
autor
  • Mechanical Engineering Department, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
  • Mechanical Engineering Department, Universitas Negeri Malang, Malang, East Java, Indonesia
Bibliografia
  • 1. B. Bauer, S. Kralj, M. Busic, Production and Application of Metal Foams in Casting Technology, Technical Gazette 20/6 (2013) 1095-1102.
  • 2. M. Aboraia, R. Sharkawi, M.A. Doheim, Production of aluminium foam and the effect of calcium carbonate as a foaming agent, Journal of Engineering Sciences 39/2 (2011) 441-451.
  • 3. N. Sinha, V.C. Srivastava, K.L. Sahoo, Processing and application of aluminium foams, Proceedings of the training Programme Special Metal Casting and Forming Processes - CAFP 2008, 2008, 54-63.
  • 4. H.P. Degischer, B. Kriszt, Handbook of Cellular Metals: Production, Processing, Application, Wiley- VCH, Weinheim, 2002.
  • 5. Reyes, O.S. Hopperstad, T. Berstad, A.G. Hanssen, M. Langseth, Constitutive modeling of aluminum foam including fracture and statistical variation of density, European Journal of Mechanics - A/Solids 22/6 (2003) 815-835.
  • 6. C.C. Yang, H. Nakae, The effects of viscosity and cooling conditions on the foamability of aluminum alloy, Journal of Materials Processing Technology 141/2 (2003) 202-206.
  • 7. J. Weise, H. Stanzick, J. Banhart, Semi-solid processing of complex-shaped foamable material, in: J. Banhart, N.A. Fleck, A. Mortensen (Eds.), Cellular Metals and Metal Foaming Technology, MIT-Verlag, 2003, 169-174.
  • 8. S.M. Oak, B.J. Kim, W.T. Kim, M.S. Chun, Y.H. Moon, Physical modeling of bubble generation in foamed-aluminum, Journal of Materials Processing Technology 130-131 (2002) 304-309.
  • 9. J. Lazaro, E. Laguna-Gutierrez, E. Solórzano, M.A. Rodriguez-Perez, Effect of Microstructural Anisotropy of PM Precursors on the Characteristic Expansion of Aluminum Foams, Metallurgical and Materials Transactions B 44/4 (2013) 984-991.
  • 10. D.C. Montgomery, Design and analysis of experiments: response suface methodology, John Wiley and Sons, Inc, New Jersey, 2005.
  • 11. T.-H. Hou, C.-H. Su, W.-L. Liu, Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm, Powder Technology 173/3 (2007) 153-162.
  • 12. N.M.S. Kaminari, M.J.J.S. Ponte, H.A. Ponte, A.C. Neto, Study of the operational parameters involved in designing a particle bed reactor for the removal of lead from industrial wastewater - central composite design methodology, Chemical Engineering Journal 105/3 (2005) 111-115.
  • 13. L. Wu, K.L. Yick, S.P. Ng, J. Yip, Application ofthe Box-Behnken design to the optimization of process parameters in foam cup molding, Expert Systems with Applications 39/9 (2012) 8059-8065.
  • 14. D.O. Aksoy, E. Sagol, Application of central composite design method to coal flotation: Modelling, optimization and verification, Fuel 183 (2016) 609¬616.
  • 15. R.H. Myers, D.C. Montgomery, C.M. Anderson- Cook, Response Surface Methodology, John Wiley & Sons inc., New York, 2002.
  • 16. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76/5 (2008) 965-977.
  • 17. V. Bewick, L. Cheek, J. Ball, Statistics review 9: One- way analysis of variance, Critical Care 8/2 (2004) 130-136.
  • 18. R. Edwin Raj, B.S.S. Daniel, Customization ofclosed- cell aluminum foam properties using design of experiments, Materials Science and Engineering A 528/4-5 (2011)2067-2075.
  • 19. I.W. Hall, M. Guden, C.J. Yu, Crushing of aluminum closed cell foams: density and strain rate effects, Scripta Materialia 43/6 (2000) 515-521.
  • 20. V.K. Jeenager, V. Pancholi, B.S.S. Daniel, Influence of cell wall microstructure on the energy absorption capability of aluminium foam, Materials and Design 56 (2014) 454-459.
  • 21. F. Campana, D. Pilone, Effect of heat treatments on the mechanical behaviour of aluminium alloy foams, Scripta Materialia 60/8 (2009) 679-682.
  • 22. D. Lehmhus, J. Banhart, Properties of heat-treated aluminium foams, Materials Science and Engineering A 349/1-2 (2003) 98-110.
  • 23. W.D. Callister Jr., D.G. Rethwisch, Materials Science and Engineering, John Wiley &Sons, Inc, 2010.
  • 24. M.A. Islam, M.A. Kader, P.J. Hazell, A.D. Brown, M. Saadatfar, M.Z. Quadir, J.P. Escobedo, Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams, Materials Science and Engineering A 666 (2016) 245-256
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a72c92e-d135-4d23-be5b-ea0b7819f7b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.