PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modele dynamiczne urządzeń pomocniczych układu SOFEC

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Dynamic models of auxiliary equipment of Solid Oxide Fuel/Electrolysis Cell unit
Języki publikacji
PL
Abstrakty
PL
Przedstawiono 0-D modele wybranych urządzeń pomocniczych układu szczytowej elektrowni wodorowej, tj. sprężarki wodoru, wysokotemperaturowego wymiennika ciepła, oraz pompy wody, które zostały odpowiednio skalibrowane na dostępnych danych doświadczalnych. Na podstawie przeprowadzonej analizy wrażliwości opracowano wytyczne konstrukcyjne i eksploatacyjne dla tych urządzeń o przeznaczeniu do pracy w układzie z ceramicznym ogniwem paliwowym, elektrolizerem, oraz zbiornikiem na sprężony wodór.
EN
Article presents 0-D models of selected auxiliaries devices of peak-hydrogen plant, ie. hydrogen compressor, high temperature heat exchanger, and a water pump, which are suitable calibrated to the available experimental data. Based on the sensitivity analysis, the guidelines for the design and operation of these devices to allocate to work in combination with ceramic fuel cell, electrolyzer, and compressed hydrogen tank.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
24--28, 35
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Politechnika Warszawska, Instytut Techniki Cieplnej, Warszawa
  • Politechnika Warszawska, Instytut Techniki Cieplnej, Warszawa
  • Politechnika Warszawska, Instytut Techniki Cieplnej, Warszawa
Bibliografia
  • [1] LEWA process diaphragm pumps, 2013.
  • [2] “Low cost high temperature heat exchanger platform”, , 2007.
  • [3] Multi-Stage Centrifugal Compressors, 2013.
  • [4] M. Amirinejad, N. Tavajohi-Hasankiadeh, S. S. Madaeni, M. A. Navarra, E. Rafiee, B. crosati: “Adaptive neuro-fuzzy inference system and artificial neural network modeling of proton exchange membrane fuel cells based on nanocomposite and recast Nafion membranes”, International Journal of Energy Research, pp. 347-357, 2013.
  • [5] D. P. Bakalis, A. G. Stamatis: “Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation”, Applied Energy, pp. 607-617, 2013.
  • [6] L. Bartela, J. Kotowicz: “Analysis of operation of the gas turbine in a poligeneration combined cycle”, Archives of Thermodynamics, pp. 137-159, 2013.
  • [7] Bryan Orchard: High pressure for energy-efficient desal, 2007.
  • [8] W. M. Budzianowski: “Modelling of CO2 content in the atmosphere until 2300: Influence of energy intensity of gross domestic product and carbon intensity of energy”, International Journal of Global Warming, pp. 1-17, 2013.
  • [9] R. Chacartegui, B. Monje, D. Sanchez, J. A. Becerra, S. Campanari: “Molten carbonate fuel cell: Towards negative emissions in wastewater treatment CHP plants”, International Journal of Greenhouse Gas Control, pp. 453-461, 2013.
  • [10] Xin Gao, Soren Juhl Andreasen, Min Chen, Soren Knudsen Kar: “Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery”, International Journal of Hydrogen Energy, pp. 8490 – 8498, 2012
  • [11] C. Guerra, A. Lanzini, P. Leone, M. Santarelli, D. Beretta: “Experimental study of dry reforming of biogas in a tubular anode-supported solid oxide fuel cell”, International Journal of Hydrogen Energy, pp. 10559-10566, 2013.
  • [12] S. A. Hajimolana, S. M. Tonekabonimoghadam, M. A. Hussain, M. H. Chakrabarti, N. S. Jayakumar,M. A. Hashim: “Thermal stress management of a solid oxide fuel cell using neural network predictive control”, Energy, pp. 320-329, 2013.
  • [13] A Hamidat: “Simulation of the performance and cost calculations of the surface pump”, Renewable Energy, pp. 383-392, 1999.
  • [14] Jan Surygala: Wodor jako paliwo. Wydawnictwo WNT, 2008.
  • [15] E. Jannelli, M. Minutillo, A. Perna: “Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances”, Applied Energy, pp. 82-91, 2013.
  • [16] N. Jhaveri, B. Mohanty, S. Khanam: “Mathematical modeling and optimization of hydrogen distribution network used in refinery”, International Journal of Hydrogen Energy, pp. 339-348, 2013.
  • [17] Gayatri Kuchi, Valery Ponyavin, Yitung Chen, Steven Sherman, Anthony Hechanova: “Numerical modeling of high-temperature shell-and-tube heat exchanger and chemical decomposer for hydrogen production”, International Journal of Hydrogen Energy, pp. 5460 – 5468, 2008.
  • [18] A. Kumar, G. Gautami, S. Khanam: “Hydrogen distribution in the rafinery using mathematical modeling”, Energy, pp. 3763-3772, 2010.
  • [19] Ryno Laubscher, Robert T Dobson: “Theoretical and experimental modelling of a heat pipe heat exchanger for high temperature nuclear reactor technology”, Applied Thermal Engineering, pp. 259 – 267, 2013.
  • [20] Christine Mansilla, Jon Sigurvinsson, André Bontemps, Alain Maréchal, François Werkoff: “Heat management for hydrogen production by high temperature steam electrolysis”, Energy, pp. 423 – 430, 2007.
  • [21] D. Marra, M. Sorrentino, C. Pianese, B. Iwanschitz: “A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications”, Journal of Power Sources, pp. 320-329, 2013.
  • [22] D. McLarty, J. Brouwer, S. Samuelsen: “Hybrid fuel cell gas turbine system design and optimization”, Journal of Fuel Cell Science and Technology, 2013.
  • [23] Optimization of refinery hydrogen distribution systems considering the number of compressors: “Wu, S. and Yu, Z. and Feng, X. and Liu, G. and Deng, C. and Chu, K. H.”, Energy, pp. 185-195, 2013.
  • [24] O. Razbani, M. Assadi: “Artificial neural network model of a short stack solid oxide fuel cell based on experimental data”, Journal of Power Sources, pp. 581-586, 2014.
  • [25] S. Sieniutycz, J. Jezowski: Energy Optimization in Process Systems and Fuel Cells. 2013.
  • [26] Jon Sigurvinsson, Christine Mansilla, B Arnason, A Bontemps, Alain Maréchal, TI Sigfusson, F Werkoff: “Heat transfer problems for the production of hydrogen from geothermal energy”, Energy conversion and management, pp. 3543–3551, 2006.
  • [27] J. P. Stempien, Q. Sun, S. H. Chan: “Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions”, Energy, pp. 647-657, 2013.
  • [28] Ted Gresh: Hydrogen recycle compressor field performance analysis, 2005.
  • [29] S.-B. Wang, C.-F. Wu, S.-F. Liu, P. Yuan: “Performance optimization and selection of operating parameters for a solid oxide fuel cell stack”, Journal of Fuel Cell Science and Technology, 2013.
  • [30] W. Wang, H. Li, X.-F. Wang: “Analyses of partload control modes and their performance of a SOFC/MGT hybrid power system”, Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, pp. 653-658, 2013.
  • [31] J.-H. Wee: “Carbon dioxide emission reduction using molten carbonate fuel cell systems”, Renewable and Sustainable Energy Reviews, pp. 178-191, 2014.
  • [32] W. Xu, C. Gao, J. Liu, W. Wang: “Hydraulic transient numerical study of super-high parameter motor-pump in drainage system for mine emergency”, Energy Procedia, pp. 464-469, 2012.
  • [33] A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi: “Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant”, International Journal of Hydrogen Energy, pp. 6289-6297, 2013.
  • [34] Min Zeng, Ting Ma, Bengt Sundén, Mohamed B. Trabia, Qiuwang Wang: “Effect of lateral fin profiles on stress performance of internally finned tubes in a high temperature heat exchanger”, Applied Thermal Engineering, pp. 886 – 895, 2013.
  • [35] Huisheng Zhang, Lijin Wang, Shilie Weng, Ming Su: “Performance research on the compact heat exchange reformer used for high temperature fuel cell systems”, Journal of power sources, pp. 282 – 294, 2008.
  • [36] T. Zhou, B. Francois: “Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system”, International Journal of Hydrogen Energy, pp. 21-30, 2008.
  • [37] W. Mielczarski: „Energetyka w Polsce – stan obecny i perspektywy na tle Europy” Instal 10, pp 4–7, 2013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a6cdf70-4b2c-4969-8a57-07f0408f3b44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.