PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Organic pollutant removal from marine diesel engine off-gases under electron beam and hybrid electron beam and wet scrubbing process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH-2020 (04–07.10.2020; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The removal of organic pollutants from ship emission was studied using two processes namely electron beam (EB) and hybrid EB with wet scrubbing process. A mobile accelerator unit was used to treat 4915 Nm3 /h of flue gas emitted from a tugboat in Riga Shipyard. A volume of 3 m3 seawater containing 36.8 mM of NaClO2 oxidant was used as a wet scrubber solution. Organic pollutants, mainly volatile organic pollutants (VOCs), were collected at three different sampling points, before and after irradiation vessels, and after wet-scrubber unit, respectively. They were collected with glass sampling bottles, tedlar bags, Coconut Shell Charcoal (CSC) sorbents and XAD-2 sorbents. CH3OH and CH3OH/CH2Cl2 (1:1) were used to extract VOCs from CSC and XAD-2 sorbents, respectively. Syringe filters were used to obtain the solid-free extraction solutions. They were concentrated using a micro-extractor under continuously blowing high-purity Ar. A gas chromatography–mass spectrometry (GC-MS) was used for analysis. The identified organic compounds were: aliphatic hydrocarbons (dodecane C12H26 to eicosane C20H42), aromatic hydrocarbon (toluene), esters (C3H7COOCH3, (C4H9OCO)2C6H4), nitro compounds (C3H5NO3, C4H7NO2) and acid (C7H15COOH). After 4.2 kGy EB irradiation, around 50–100% aliphatic hydrocarbons, 83% toluene and 7.5% (C4H9OCO)2C6H4 were removed from the off-gases, and after EB hybrid wet-scrubber process, most organic compounds including nitro compounds were removed. Only trace amount of toluene, hexadecane, octadecane and dibutyl phthalate were found to be present in the gas phase.
Czasopismo
Rocznik
Strony
193--199
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
  • Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology, FEP Dresden, Germany
autor
  • Riga Technical University, Riga, Latvia
Bibliografia
  • 1. US Environmental Protection Agency. (2020). Initial list of hazardous air pollutants with modifications.Retrieved September 30, 2020, from https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifi cations.
  • 2. US Environmental Protection Agency. (2020).MARPOL Annex VI and the Act to Prevent Pollution from Ships (APPS). Retrieved September 30, 2020,from https://www.epa.gov/enforcement/marpol-annex-vi-and-act-prevent-pollution-ships-apps.
  • 3. Sun, Y., Zwolińska, E., & Chmielewski, A. G. (2016). Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Crit. Rev. Environ. Sci. Technol., 46(2), 119–142. http://dx.doi.org/10.1080/10643389.2015.1063334.
  • 4. Zwolińska, E., Sun, Y., Chmielewski, A. G., Pawelec,A. & Bułka, S. (2020). Removal of high concentrations of NOx and SO2 from diesel off-gases using a hybrid electron beam technology. Energy Rep., 6,952–964. https://doi.org/10.1016/j.egyr.2020.04.008.
  • 5. Torims, T., Kravalis, K., Pikurs, G., Ruse, A.,Chmielewski, A. G., Pawelec, A., Zimek, Z., Mattausch, G., & Vretenar, M. (2020). Development of a hybrid electron accelerator system for the treatment of marine diesel exhaust gases. In Proceedings of the 11th International Particle Accelerator Conference, May 10–15, 2020, Ganil/Caen, France. DOI: 10.18429/JACoW-IPAC2020-THVIR14.
  • 6. US Environmental Protection Agency. (2019). Method 18 – Measurement of gaseous organic compound emissions by gas chromatography. Retrieved September 30, 2020, from https://www.epa.gov/sites/production/files/2019-06/documents/method_18_0.pdf.
  • 7. Basfar, A. A., Fageeha, O. I., Kunnummal, N., Al-Ghamdi, S., Chmielewski, A. G., Licki, J., Pawelec, A., Tymiński, B., & Zimek, Z. (2008). Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels. Fuel, 87, 1446–1452. https://doi.org/10.1016/j.fuel.2007.09.005.
  • 8. US Department of Labor. (2020). Occupational safety and health standards. Toxic and hazardous substances. TABLE Z-1 – Limits for air contaminants. Retrieved September 30, 2020, from https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1000TABLEZ1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a6a4441-26c3-4e03-9980-42c80e727ff7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.