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Abstract 

One of the most important subsystems of the vehicles and machines operating currently in industry and 
transportation are the rotating subsystems. During the subsystems operation, due to the forcing factors influence, the 
technical state of them is changing and the failure can occur. In order to avoid such a situation the technical state 
should be identified online. To do this the analysis of the subsystems vibrations is performed. The identified technical 
state should be considered in a context of the ability and different inability states. Therefore, the first step of 
the diagnostic procedure is the ability and different inability states identification. In the article, it is 
proposed to accomplish this goal by the vibrations analysis in time domain. The described research started 
with the vibration signals acquisition using the experimental stand. In this way, the vibration signals for ability 
and different inability states were obtained. Afterwards, the signals were divided into learning and testing data 
sets. For each signal from learning data set, several characteristics were calculated, and they selected the most 
significant among them. Using the selected characteristics, the signals from the testing data set were analysed. 
Thanks to it, the testing vibrations signals were counted among the signals collected on the rotating subsystem 
operating in ability or selected inability state. The result of the performed studies and the accuracy of the technical 
state of the tested system identification can be found at the end of the article. 
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1. Introduction

Rotating subsystems are one of the most important elements used in different kind of vehicles 
and machines in order to transform the energy and transmit the power. Failures of the rotating 
subsystems operation are caused by the impact of external forces, fatigue corrosion, aging and 
inappropriate working conditions. It is a reason of unexpected breakdowns of the production and 
transportation systems and enormous costs of the systems maintenance. Therefore, monitoring of 
the technical state of machine and transportation systems is an important issue of the engineering 
and academic research. Fault detection and rotor systems diagnosis, based on vibration signal 
analysis, is one of the principal maintenance tools [8]. In term of a system reliability and safety, 
vibrations are primary diagnostic symptoms [10, 11, 16-18]. 

Vibrations and noise produced by rotational subsystems occur, practically in all mechanical 
subsystems of transport means. Vibrations are produced by shafts, axes, fans, pumps and turbines 

ISSN: 1231-4005 
e-ISSN: 2354-0133 
DOI: 10.2478/kones-2019-0014 

mailto:m.pajak@uthrad.pl


M. Pająk, D. Lisjak, D. Kolar 

depending on the type of transport means or device. 
According to literature, it is possible to carry out research on the basis of a correlation analysis 

and identify early symptoms of rotational system dynamic changes, especially their misalignment, 
through measurement of its vibrations [2-5, 7]. The Fourier transformation [1, 9] and wavelet 
transformation [13, 14] have been widely applied in recognizing the fault feature frequencies of 
machinery equipment. However, the feature frequency cannot always be detected because 
of difficulties in obtaining the value of rotating frequency or the values of operational parameters 
of mechanical parts, which limits its implementation. 

The authors focused their efforts on vibration signals time-domain analysis. Firstly, using the 
simulation stand, the experiment simulations described in chapter 2 were performed in order to 
record vibration signals of rotational subsystem operating in ability and different inability states. 
Subsequently, for each signal, several time-domain characteristics were calculated and the most 
significant of them were selected. They were used to formulate the space of reliability states and 
the space of inability states. It was described in chapter 3. In chapter 4, the implementation of the 
formulated spaces in order to identify the inability states of the rotational subsystems was 
presented. The article is summed up by some conclusions formulated in chapter 5. 

2. Performed experiment simulations

In the study, the vibration signals acquired from a machine fault simulator were used. 
A SpectraQuest variable speed Machinery Fault Simulator (MFS) was used to generate both 
normal operation (NO) and faulty condition data. The simulation stand (Fig. 1) comprised 1 HP 
variable speed motor driving a shaft-rotor component via coupling supported with two sets of ball 
bearings. The MFS is outfitted with three-axis accelerometer and a tachometer that were connected 
to a National Instruments DAQ System.  

Fig. 1. Fault simulator: 1 – three-phase induction motor, 2 – variable speed motor drive, 3 – clutch, 
4 – main shaft with load, 5 – three-axis accelerometer 

Three-axis accelerometer was mounted on the bearing housing on the shaft side opposite of the 
motor position. The sampling frequency was set to 6.4 kHz, while revolving speed during the 
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experiment was 1500 rpm. Vibration signals in three directions (X, Y, Z) were acquired when the 
system operated under normal condition (NO) and faulty conditions (UN). There were four faulty 
conditions simulated: slant rotor (SR), eccentric rotor (ER), unbalanced rotor without additional 
load (UR) and unbalanced rotor with additional load 3kg along Z axis (URAL). Operation under 
normal conditions was interpreted as operating of the rotating subsystem remaining in ability state 
while operation under any of faulty conditions was interpreted as operating of the rotating 
subsystem remaining in inability state. 

Each vibration sample comprising 6400 values was stored as a separate vibration signal. The 
signals acquired for each operation condition were divided into two groups: learning and testing 
data sets. The learning data set consisted of 926 vibration signals (NO:600; SR:75; ER:75; UR:113; 
URAL:113) and testing data set consisted of 274 vibration signals (NO:150; SR:25; ER:25; UR:37; 
URAL:37). 
 
3. Reliability states spaces formulation 
 

The states spaces formulation was accomplished using the vibration signals belonging to the 
learning set. For each signal for each axis, separately 16 characteristics were calculated according 
to the following list [6, 15]:  
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where: 
vsi – i-th recorded vibration signal, 
t0 – the time of the beginning of the signal vs, 
tk – the time of the end of the signal vs, 
[vsi] – integral of signal, 
〈vsi〉 – mean value of signal, 
Evsi – energy of signal, 
Pvsi – medium power of signal, 
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x
vsim  – simple moment of x order, 

( )
x

vsit m−  – central moment of x order,  

x
vsit  – normalized simple moment of x order,  

( )x
vsit t−  – normalized central moment of x order,  

2vsit  – abscissa of the signal square gravity centre,  

2
2
vsi

σ  – variance of the signal square,  

vsit∆  – equivalent diameter of signal,  
vsiT∆  – mean width of signal.  
Subsequently, for each learning group of vibration signals distinguished for ability state (NO), 

different simulated inability states (SR, ER, UR, URAL) and all inability states (UN) for each axis 
separately mean value and standard deviation of values of each characteristic (1-16) were 
calculated.  

On the basis of the former authors studies [12] it was decided that the characteristic is 
concentrated if standard deviation (σ) of the characteristic value (D) in a group (VS) is lower than 
15% of the mean value (17). 

 ( ) ( ) 0.15D VS D VSσ ≤ ⋅ , (17) 

where: 
D(VS) – the characteristic of the vibration signal, 
VS – the group of the vibration signals.  

In Tab. 1 the results of the concentration analysis of the characteristics are presented. In the 
Tab. 1 means concentrated and 0 not concentrated characteristic. 

Moreover, if the characteristic was concentrated one and the absolute value of the difference of 
the characteristic mean value for signals from the group of ability states (NO) and mean values 
of the characteristic for signals from each group of inability states (UN) was higher than the sum 
of standard deviations of the signals characteristics for analysed groups (18) the characteristic was 
taken into consideration as a characteristic uniquely identifying the reliability state 

 ( ) ( ) ( ) ( )IA AD VS D VS IA AD VS D VSσ σ+ ≤ − , (18) 

where: 
D(VS) – the characteristic of the vibration signal, 
VSIA – the group of the vibration signals for inability states, 
VSA – the group of the vibration signals for ability states. 

Similarly, if the characteristic was concentrated one and the absolute value of the difference of 
the characteristic mean value for signals from the group of the selected inability state (SR, ER, UR, 
URAL) and mean values of the characteristic for signals from remaining group of inability states 
was higher than the sum of standard deviations of the signals characteristics for analysed groups 
(18) the characteristic was taken into consideration as a characteristic uniquely identifying the type 
of the inability state (type of failure).  

As a result of the performed studies two states spaces were defined. The first of them was R7 
reliability states space (RSS). The dimensions of the RSS space were the characteristics uniquely 
identifying the reliability state X:1; X:2; X:5; X:6; Z:1; Z:2; Z:5 (X and Z are the vibrations axis;  
number is the characteristic according to the equations numbers in the article). The second one was 
R4 inability states space (ISS). The dimensions of the ISS space were the characteristics uniquely 
identifying the type of the inability state X:3; X:4; Y:3; Y:4. 
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Tab. 1. The results of the concentration analysis of the characteristics 

Axis X 
Ch-k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Group 
NO 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 
SR 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 
ER 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 
UR 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 

URAL 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 
UN 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 
Axis Y 
NO 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 
SR 0 0 1 1 0 0 0 0 1 0 1 1 1 1 0 1 
ER 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 
UR 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 

URAL 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 
UN 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 
Axis Z 
NO 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 
SR 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 
ER 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 
UR 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 

URAL 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 
UN 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 

 
4. Rotating system inability states identification 
 

In both defined spaces (RSS and ISS) the vibration signals are expressed as points determined 
by the values of characteristics - dimensions of the space. The mean values of the characteristics of 
learning groups also define points in the space. In this way for NO group of learning signals in RSS 
space the point of the ability states was defined. Similarly, in RRS space for SR, ER, UR and URAL 
groups of learning signals the points of specified inability states were defined. Simultaneously, in 
ISS space, the mean values of the characteristics - the dimensions of this space for SR, ER, UR and 
URAL groups of learning signals determined the points of specific types of inability states. To 
assure the same influence of each characteristic on the identification process all values were 
transformed according to formula (19) 

 100
max( ( ))

T
DD
D VS

= ⋅ , (19) 

where: 
D(VS) – the characteristic of the vibration signal, 
D – the value of the characteristic, 
DT – the value of the characteristic after transformation [%]. 

Subsequently, in each space, the Euclidian distances between the points enumerated above and 
the points determined for each vibration signal from testing groups (NOT, SRT, ERT, URT, 
URALT) were calculated. If the distance between the point of RSS space determined for analysed 
signal and the point of the ability states NO(RSS) was smaller than every distances between that 
point and SR(RSS), ER(RSS), UR(RSS) and URAL(RSS) points then the signal was identified as 
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registered on rotating subsystem remaining in ability state (no failure). Otherwise, the analysed 
testing vibration signal was identified as signal registered on rotating subsystem remaining in 
inability state (operation with failure).  

If the signal was classified as a signal registered on rotating subsystem remaining in inability 
state, it was also analysed in ISS space. The signal was identified as a signal recorded on rotating 
subsystem remaining in specified inability state if the distance between the point of ISS space 
determined for analysed vibration signal (from testing groups) and the point of ISS space 
determined for one of the considered inability states (SR, ER, UR, URAL) is the smallest one. The 
results of the performed identification are presented in Tab. 2. 

 
Tab. 2. The results of the identification process 

Identification in RSS space 
Group of testing 

signals 
Identified  

as ability state 
Identified  

as inability state 
Correctness of reliability state  

identification [%] 
NOT 148 2 98.7 
SRT 0 25 100 
ERT 0 25 100 
URT 0 37 100 

URALT 1 36 97.3 
Identification in ISS space 

Group of testing 
signals 

Identified  
as SR 

Identified  
as ER 

Identified  
as UR 

Identified  
as URAL 

Correctness of inability state  
type identification [%] 

SRT 25 0 0 0 100 
ERT 0 25 0 0 100 
URT 0 0 37 0 100 

URALT 0 0 0 36 100 
 
5. Summary and conclusions 
 

The research presented in the article considered reliability states of the rotating subsystems. In 
order to identify ability and specified inability states the experimental tests were accomplished. 
During the tests, vibration signals were recorded. Dividing the recorded signals into learning and 
testing sets and calculating several characteristics of the signals the reliability states space and 
inability states space were formulated. The spaces were used in proposed classification method to 
identify the reliability state of the rotating subsystems and to identify the type of the failure in case 
of the inability state occurrence. Subsequently, the effectiveness of the described identification 
method was checked using the testing signals set. The tests proved pretty high accuracy of the 
method. The ability/inability state was correctly identified in more than 99% and the type of the 
inability state was identified correctly in 100%. On the basis of the results of the executed tests, it 
was stated that the proposed identification method is precise enough to be the object of further 
industrial research. 

It is planned to continue the studies in the field of the reliability states identification of the 
rotating subsystems. The next step of the tests will be the analysis of the identification method 
accuracy under industrial conditions were different sources of noise can be present. Additionally, the 
method will be tested using different types of inability states not present in the learning signals set. 
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