Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: This paper presents an overview on some ceramic materials capable of achieving in-situ reinforcements in Al/Al-alloy metal matrix composites (MMCs) during laser processing. It also presents perspective on further exploitation of the in-situ reinforcement capabilities for high quality MMCs feedstock material development. Design/methodology/approach: The approach utilized in writing this paper encompasses the review of relevant literature on additive manufacturing (AM) of MMCs. Findings: It is widely accepted that the in-situ reinforcement approach has proven to be more advantageous than the ex-situ approach. Though there are still some challenges like the formation of detremental phases and the evaporation of low melting temperature elements, the in-situ reinforcement approach can be used to tailor design composite powder feedstock materials for the AM of MMCs. The preprocessing or tailor-designing in-situ metal matrix composite powder before laser melting into desired components holds more promises for metal additive manufacturing. Practical implications: The need for the development of MMCs powder feedstock that can be directly fabricated using suitable AM technique without prior powder processing like blending or mechanical alloying has not yet been addressed Therefore, having a pre-processed in-situ reinforced MMC feedstock powder can encourage easy fabrication of MMC and other advantages of AM technologies powder recycling. Originality/value: The idea explained in this article is relevant to materials development for AM processing of metal matrix composite. This paper has pointed out future trends for MMCs materials feedstock powder development and new ideas for further exploitation of MMCs and AM technologies. The advantages of tailor-designing composite powders other than merely mixing them has been emphasized.
Wydawca
Rocznik
Tom
Strony
78--85
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Meknes Road, Bensouda Roundabout, 30 000, Fès, Morocco
autor
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Meknes Road, Bensouda Roundabout, 30 000, Fès, Morocco
Bibliografia
- [1] M. Dadkhah, M.H. Mosallanejad, L. Iuliano, A. Saboori, A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions, Acta Metallurgica Sinica (English Letters) 34 (2021) 1173-1200. DOI: https://doi.org/10.1007/s40195-021-01249-7
- [2] S. Dadbakhsh, R. Mertens, L. Hao, J. Van Humbeeck, J.P. Kruth, Selective Laser Melting to Manufacture “In Situ” Metal Matrix Composites: A Review, Advanced Engineering Materials 21/3 (2019) 1-18. DOI: https://doi.org/10.1002/adem.201801244
- [3] Y. Hu, W. Cong, A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites, Ceramics International 44/17 (2018) 20599-20612. DOI: https://doi.org/10.1016/j.ceramint.2018.08.083
- [4] N.K. Bhoi, H. Singh, S. Pratap, Synthesis and characterization of zinc oxide reinforced aluminium metal matrix composite produced by microwave sintering, Journal of Composite Materials 54/24 (2020) 3625-3636. DOI: https://doi.org/10.1177/0021998320918646
- [5] U. Essien, S. Vaudreuil, Issues in Metal Matrix Composites Fabricated by Laser Powder Bed Fusion Technique: A Review, Advanced Engineering Materials (2022) (Early View - Online Version). DOI: https://doi.org/10.1002/adem.202200055
- [6] J. Shi, Y. Wang, Development of metal matrix composites by laser-assisted additive manufacturing technologies: a review, Journal of Materials Science 55 (2020) 9883-9917. DOI: https://doi.org/10.1007/s10853-020-04730-3
- [7] A. Mostafaei, A. Heidarzadeh, D. Brabazon, Production of Metal Matrix Composites Via Additive Manufacturing, in: D. Brabazon (ed.), Encyclopedia of Materials: Composites, Vol. 2, Elsevier Ltd. 2021, 605-614. DOI: https://doi.org/10.1016/b978-0-12-803581-8.11884-3
- [8] P. Ashwath, J. Joel, M. Anthony Xavior, H.G. Prashantha Kumar, Effect of SiC and Al2O 3 particles addition to AA 2900 and AA 2024 MMC’s synthesized through microwave sintering, Materials Today: Proceedings 5/2/P2 (2018) 7329-7336. DOI: https://doi.org/10.1016/j.matpr.2017.11.402
- [9] Q. Shi, R. Mertens, S. Dadbakhsh, G. Li, S. Yang, In-situ formation of particle reinforced Aluminium matrix composites by laser powder bed fusion of Fe2O3/AlSi12 powder mixture using laser melting/remelting strategy, Journal of Materials Processing Technology 299 (2022) 117357. DOI: https://doi.org/10.1016/j.jmatprotec.2021.117357
- [10] T. Larimian, T. Borkar, Additive Manufacturing of In Situ Metal Matrix Composites, in: B. AlMangour (ed.), Additive Manufacturing of Emerging Materials, Springer, Cham, 2019, 1-28. DOI: https://doi.org/10.1007/978-3-319-91713-9_1
- [11] E. Fereiduni, M. Yakout, M. Elbestawi, Laser-Based Additive Manufacturing of Lightweight Metal Matrix Composites, in: B. AlMangour (ed.), Additive Manufacturing of Emerging Materials, Springer, Cham, 2019, 55-109. DOI: https://doi.org/10.1007/978-3-319-91713-9_3
- [12] V. Khanna, V. Kumar, S.A. Bansal, Effect of carbonaceous nanomaterials’ reinforcement on mechanical properties of aluminium metal-based nanocomposite: A review, Materials Today: Proceedings 38/1 (2020) 289-295. DOI: https://doi.org/10.1016/j.matpr.2020.07.221
- [13] V. Ferreira, P. Egizabal, V. Popov, M. García de Cortázar, A. Irazustabarrena, A.M. López-Sabirón, G. Ferreira, Lightweight automotive components based on nanodiamond-reinforced aluminium alloy: A technical and environmental evaluation, Diamond and Related Materials 92 (2019) 174-186. DOI: https://doi.org/10.1016/j.diamond.2018.12.015
- [14] V. Khanna, V. Kumar, S.A. Bansal, Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective, Materials Research Bulletin 138 (2021) 111224. DOI: https://doi.org/10.1016/j.materresbull.2021.111224
- [15] E.M. Parsons, T.M. Mower, Selective Laser Melting of Metal Matrix Composites: FY19 Advanced Materials and Processes Line-Supported Program, Project Report LSP-285, Lincoln Laboratory, MIT, Lexington, Massachusetts, 2020.
- [16] M. Chen, X. Li, G. Ji, Y. Wu, Z. Chen, W. Baekelant, K. Vanmeensel, H. Wang, J.P. Kruth, Novel composite powders with uniform TiB2 nano-particle distribution for 3D printing, Applied Sciences 7/3 (2017) 250. DOI: https://doi.org/10.3390/app7030250
- [17] J.M. Mistry, P.P. Gohil, Research review of diversified reinforcement on aluminum metal matrix composites: Fabrication processes and mechanical characterization, Science and Engineering of Composite Materials 25/4 (2018) 633-647. DOI: https://doi.org/10.1515/secm-2016-0278
- [18] A.I. Mertens, J. Lecomte-Beckers, On the Role of Interfacial Reactions, Dissolution and Secondary Precipitation During the Laser Additive Manufacturing of Metal Matrix Composites: A Review, in: I.V. Shishkovsky (ed.), New Trends in 3D Printing, Intech Open, Rjeka, 2016, 187-213. DOI: https://doi.org/10.5772/63045
- [19] Q. Shi, D. Gu, K. Lin, W. Chen, M. Xia, D. Dai, The role of reinforcing particle size in tailoring interfacial microstructure and wear performance of selective laser melting WC/Inconel 718 Composites, Journal of Manufacturing Science and Engineering, Transactions of the ASME 140/11 (2018) 111019. DOI: https://doi.org/10.1115/1.4040544
- [20] E. Fereiduni, A. Ghasemi, M. Elbestawi, Selective laser melting of hybrid ex-situ/in-situ reinforced titanium matrix composites: laser/powder interaction, reinforcement formation mechanism, and non-equilibrium microstructural evolutions, Materials and Design 184 (2019) 108185. DOI: https://doi.org/10.1016/j.matdes.2019.108185
- [21] S. Kumar, J.P. Kruth, Composites by rapid prototyping technology, Materials and Design 31/2 (2010) 850-856. DOI: https://doi.org/10.1016/j.matdes.2009.07.045
- [22] B.T. Balogun, R.A. Muriana, U.A. Essien, F. Asuke, Exploitation of quartzite as reinforcement in aluminium based, Journal of Science, Technology, Mathematics and Education 15/3 (2019) 19-31.
- [23] P. Yuan, D. Gu, D. Dai, Particulate migration behawior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites, Materials and Design. 82 (2015) 46-55. DOI: https://doi.org/10.1016/j.matdes.2015.05.041
- [24] R. Anandkumar, A. Almeida, R. Colaço, R. Vilar, V. Ocelik, J.T.M. De Hosson, Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings, Surface and Coatings Technology 201/24 (2007) 9497–9505. DOI: https://doi.org/10.1016/j.surfcoat.2007.04.003
- [25] R. Anandkumar, A. Almeida, R. Vilar, Microstructure and sliding wear resistance of an Al-12wt.% Si/TiC laser clad coating, Wear 282-283 (2012) 31-39. DOI: https://doi.org/10.1016/j.wear.2012.01.022
- [26] R. Anandkumar, A. Almeida, R. Vilar, Wear behawior of Al-12Si/TiB2 coatings produced by laser cladding, Surface and Coatings Technology 205/13-14 (2011) 3824-3832. DOI: https://doi.org/10.1016/j.surfcoat.2011.01.048
- [27] X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, J.P. Kruth, Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility, Acta Materialia 129 (2017) 183-193. DOI: https://doi.org/10.1016/j.actamat.2017.02.062
- [28] I. Kolaric, C. Hubrich, R. Addinall, Plasma spheroidised metals for additive manufacturing, in: M. Bargende, H.C. Reuss, J. Wiedemann (eds), 17. Internationales Stuttgarter Symposium. Proceedings, Springer Vieweg, Wiesbaden, 2017, 491-500. DOI: https://doi.org/10.1007/978-3-658-16988-6_39
- [29] R. Vert, R. Pontone, R. Dolbec, L. Dionne, M.I. Boulos, Induction plasma technology applied to powder manufacturing: Example of titanium-based materials, Proceedings of the International Powder Metallurgy Congress and Exhibition “Euro PM 2015”, Reims, France, 2015, 5-7.
- [30] R. Vert, R. Pontone, R. Dolbec, L. Dionne, M.I. Boulos, Induction plasma technology applied to powder manufacturing: Example of Titanium-based materials, Key Engineering Materials 704 (2016) 282-286. DOI: https://doi.org/10.4028/www.scientific.net/KEM.704.282
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a64f84c-9e8a-46c0-b5ac-28370326ace7