PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Flexural strength of glass using Weibull statistic analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study is to measure the flexural strength of glass by proposed experimental procedures. In addition, step-by-step guidelines for the strength data analysis using a two-parameter Weibull distribution are given. Design/methodology/approach: Twelve glass samples of three series were tested by three-point bending with horizontal ‘3PB(H)’ and vertical ‘3PB(V)’ orientation of samples. A two-parameter Weibull distribution was applied as an appropriate model to describe three strength data sets for glass. Findings: The experiments performed on nominally identical glass specimens revealed a wide range of flexural strength values, from 39.77 MPa to 171.71 MPa at a loading rate of not more than 1.05 MPa/s. 3PB(V) samples with vertical orientation demonstrated the flexural strength similar to that of 3PB(H) samples with horizontal orientation. The Weibull modulus, which is the measure of flexural strength variation, was between 2.04 and 5.23 at the coefficient of determination R2 greater than 90% for all series. The characteristic values of the glass strength, corresponding to the 5% fractile value, in accordance with the test evaluation procedure were 23.71 MPa, 31.98 MPa, 53.43 MPa for the first, the second and the third test series, respectively. Research limitations/implications: The maximum flexural strength of glass highly depends on the surface condition, and therefore the strength of the glass of different batches is variable whatever the case may be. For the guaranteed strength of glass used for structural purposes it is necessary to conduct strength tests of the glass from each batch under conditions that closely correspond to actual operating conditions. Practical implications: The obtained strength data is needed for designing glass load bearing constructions subjected to actual operating conditions (e.g. multilayered glass plates working on bending under static loading). Originality/value: A comprehensive overview of the existing methods for glass strength testing was presented. The features of the used flexural tests and the statistical analysis of the measured strength data were described. The results may be of a particular interest to the specialists in the modern design of load bearing glass constructions.
Rocznik
Strony
49--61
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Building Constructions and Bridges, Institute of Building and Environmental Engineering, Lviv Polytechnic National University, Karpinskyy str. 6, building 2, 79013, Lviv, Ukraine
autor
  • Department of Building Constructions and Bridges, Institute of Building and Environmental Engineering, Lviv Polytechnic National University, Karpinskyy str. 6, building 2, 79013, Lviv, Ukraine
Bibliografia
  • [1] R. Kalamar, M. Eliašová, Load Bearing Innovative Construction from Glass, IOP Conference Series: Materials Science and Engineering 96 (2015) 012066, doi: https://doi.org/10.1088/1757-899X/96/1/012066, Access in: 04.05.2018.
  • [2] M. Achintha, Sustainability of glass in construction, in: J. Khatib (Ed.), Sustainability of Construction Materials, Woodhead Publishing, 2016, 79-104, doi: https://doi.org/10.1016/B978-0-08-100370-1.00005-6, Access in: 04.05.2018.
  • [3] F. Pariafsai, A review of design considerations in glass buildings, Frontiers of Architectural Research 5/2 (2016) 171-193, doi: https://doi.org/10.1016/j.foar.2016.01.006, Access in: 04.05.2018.
  • [4] T. Osadchuk, B. Demchyna, Experimental researches of multilayered glass plates which working on bending under stamp loading on the local area, Budivelne vyrobnytstvo: mizhvidomchyi naukovo-tekhnichnyi zbirnyk 60 (2016) 58-63, Available from: https://ndibv.kiev.na/wp-content/uploads/2016/06/Osadchuk.pdf (in Ukrainian), Access in: 04.05.2018.
  • [5] T. Osadchuk, B. Demchyna, Strain measurement of laminated glass plates using digital image correlation, Naukovo-tekhnichnyi zbirnyk “Komunalne hospodarstvo mist”, Seriia: Tekhnichni nauky ta arkhitektura 134 (2017) 153-163, Available from: http://eprints.kname.edu.ua/46097/1/5013-9958-1-SM.pdf (in Ukrainian), Access in: 04.05.2018.
  • [6] B. Demchyna, T. Osadchuk, K. Demchyna, Bending strength and deformability of multilayered glass plates with different types of glass, Visnyk Odeskoi derzhavnoi akademii budivnytstva ta arkhitektury 69 (2017) 30-37, Available from: http://www.ogasa.org.uai/visnik-archive.html (in Ukrainian), Access in: 04.05.2018.
  • [7] K. Nattermann, N. Neuroth, R.J. Scheller, Mechanical Properties, in: H. Bach, N. Neuroth (Eds.), The Properties of Optical Glass. Schott Series on Glass and Glass Ceramics (Science, Technology and Applications), Springer, Berlin, Heidelberg, 1998, 179-200, doi: https://doi.org/10.1007/978-3-642-57769-7_4, Access in: 04.05.2018.
  • [8] H. Scholze, Glass: Nature, Structure, and Properties, Springer Science & Business Media: 2012.
  • [9] Code of Practice for Structural Use of Glass 2018, Buildings Department, The Government of the Hong Kong Special Administrrative Region, 2018, Available from: http://www.bd.gov.hk/english/documents/code/SUG2018e.pdf, Access in: 04.05.2018.
  • [10] R.E. Mould, The Strength or Inorganic Glasses, in: L.J. Bonis, J.J. Duga, J.J. Gilman (Eds.), Phonomena in the Materials Sciences, Vol. 4: Fracture of Metals Polymers and Glasses, Plenum Press, 1967, 119-149, Available from: http://www.americanglassresearch.com sites/default/files/r009-the_strength_of_inorganic_glass.pdf, Access in: 04.05.2018.
  • [11] L. Curkovic, A. Bakic, J. Kodvanj, T. Haramina, Flexural strength of alumina ceramics: Weibull analysis. Transactions of Famena 34 (2010) 13-18, Available from: http://repzitorij.fsb.hr/3589/1/FLEXURAL%20STRENGHT%20OF%20ALUMINA%20CERAMICS.pdf, Access in: 04.05.2018
  • [12] S. Costa, M. Miranda, H. Varum, F. Teixeira-Dias, On the Evaluation of the Mechanical Behaviour of Structural Glass Elements, Materials Science Forum 514-516 (2006) 799-803, doi: https://doi.org/10.4028/www.scientitic.net/MSF.514-516.799, Access in: 04.05.2018.
  • [13] A.R. Migliore Jr, E.D. Zanotto, Fracture strength of glass analysed by different testing procedures, Glass Technology 37/3 (1996) 95-98, Available from http://www.lamav.ufscar.br/artpdf/gt37.pdf, Access in: 04.05.2018.
  • [14] M. Feldmann, R. Kasper, B. Abeln, P. Cruz, J. Belis, J. Beyer, J. Colvin, F. Ensslen, M. Eliasova, L. Galuppi, A. Geβler, C. Grenier, A. Haese, H. Hoegner, R. Kruijs, K. Langosch. Ch. Louter, G. Manara, T. Morgan, J. Neugebauer, V. Rajcic, G. Royer-Carfagni, J. Schneider, S. Schula, G. Siebert, Z. Sulcova, F. Wellershoff, R. Zarnic, in: S. Dimova, A. Pinto, M. Feldmann, S. Denton (Eds.), JRC scientific and policy reports - Guidance for European Structural Design of Glass Components - Support to the Implementaion, harmonization and further development of the Eurocodes (Report EUR 26439 EN), Publications Office of the European Union, Luxembourg, 2014, doi: https://doi.org/10.2788/5523, Access in: 04.05.2018.
  • [15] S. Schula, J. Schneider, M. Vandebroek, J. Belis, Fracture strength of glass, engineering testing methods and estimation of characteristic values. in: J. Belis. C. Louter. D. Mocibob (Eds.), Proceedings of COST Action TU0905 Mid-term Conference on Structural Glass, Poreč, Croatia, 18-19 April 2013, Boca Raton, Fla.: CRC Press, 2013, 223-234.
  • [16] M. Haldimann, Fracture strength of structural glass elements analytical and numerical modeling, testitng and design: PhD Thesis (Thesè No 3671), EPFL, Lausanne, Switzerland, 2006, Available from: https://infoscience.epfl.ch/record/89658/files/EPFL_TH3671.pdf, Access in: 04.05.2018.
  • [17] M. Haldimann, A. Luible, M. Overend, Structural Use of Glass, Structural Engineering Document SED, International Association for Bridge and Structural Engineering (IABSE), Zürich. Forthcoming, 2008.
  • [18] EN 1288-3:2000. Glass in building - Determination of the bending strength of glass - Part 3: Test with specimen supported at two points (four point bending), Brussels, European Committee for Standardization CEN, 2000.
  • [19] EN 1288-2:2000, Glass in building - Determination of the bending strength of glass - Part 2: Coaxial double ring test on flat specimens with large test surface areas, Brussels, European Committee for Standardization CEN, 2000.
  • [20] EN 1288-5:2000, Glass in building - Determination of the bending strength of glass - Part 5: Coaxial double ring test on flat specimens with small test surface areas, Brussels, European Committee for Standardization CEN, 2000.
  • [21] EN 1288-1:2000, Glass in building - Determination of the bending strength of glass - Fundamentals of testing glass, Brussels, European Committeee for Standardization CEN, 2000.
  • [22] ASTM C158-02(2017), Standard Test Methods for Strength of Glass by Flexural (Determination of Modulus of Rupture), ASTM International, West Conshohocken, PA, 2017.
  • [23] Glass Strength Bend Test Eqiupment - Test Resources, Available from: https://www.testresources.net/applications/test-types/flexural-test/glass-strenght-bend-test-equipment/, Access in: 04.05.2018.
  • [24] ASTM C158 Flexural Bend Testing for Glass Test Resources, Available from: https://www.testresources.net/applications/standards/astm/astm-c158-flexural-bend-testing-for-glass/, Access in: 04.05.2018.
  • [25] D.Z. Yankelevsky, K. Spiller, J.A. Packer, M.V. Seica, Fracture characteristics of laboratory- tested soda lime glass specimens, Canadian Journal of Civil Engineering 44/3 (2017) 151-160, doi: https://doi.org/10.1139/cjce-2016-0374, Access in: 04.05.2018.
  • [26] G.D. Quinn, B.T. Sparenberg, P. Koshy, L.K. Ives, S. Jahanmir, D.D. Arola, Flexural Strength or Ceramic and Glass Rods, Journal of Testing and Evaluation 37/3 (2009) 222-244, doi: https://doi.org/10.1520/JTE101649, Access in: 04.05.2018.
  • [27] K.C. Datsiou, M. Overend, Weibull parameter estimation and goodnees-of-fit for glass strength data, Structural Safety 73 (2018) 29-41, doi: https://doi.org/10.1016/j.strusafe.2018.02.002, Access in: 04.05.2018.
  • [28] C.A. Klein, Characteristic strength, Weibull modulus, and failure probability of fused silica glass, Optical Engineering 48/11 (2009) 113401, doi: https://doi.org/10.1117/1.3265716, Acces in: 04.05.2018.
  • [29] EN 61649:2008, Weibull analysis (IEC 61649:2008), European Committee for Electrotechnical Standardization (CENELEC), 2008.
  • [30] EN 12603:2002, Glass in building - Procedures for goodness of fit and confidence intervals for Weibull distributed glass strength data, European Committee for Standardization (CEN), 2002.
  • [31] ASTM C1161-18, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, ASTM International, West Conshohocken, PA, 2018.
  • [32] R. Rigby, M. Stasinopoulos, G. Heller, F. De Bastiani, Distributions for Modelling Location, Scale and Shape: Using GAMLSS in R, 2017, Available from: http://www.gamlss.com/wp-content/uploads/2018/01/DistributionsForModellingLocationScaleandShape. Pdf, Access in: 04.05.2018.
  • [33] P.D. O'Connor, Practical Reliability Engineering, Wiley, 2002.
  • [34] P.O. Prystavka, O.M. Matsuha, Data Analysis: training manual, D.: DNU, 2008, Available from: http://repository.dnu.dp.ua:1100/upload/213720b129a 0b62e1e333d31fd1a03c1Pristavka-P.O.,-MacugaO.M.-Analiz-danix.pdf (in Ukrainian), Access in: 04.05.2018.
  • [35] Y.V. Rebro, V.A. Nosenko, N.N. Korotkova, Applied mathematical statistics for technical specialties: training manual. V: VolhHTU, 2011, Available from: http://www.volpi.ru/files/vpf/vpf_Iibrary/prikl_mat_stat_dlja_tekhnich_specialnostci.pdf (in Russian), Access in: 04.05.2018.
  • [36] 8.1.6.2. Weibull, Available from: http://www.itl.nist.gov/div898/handbook/apr/section1/apr162.htm, Access in: 04.05.2018.
  • [37] Weibull Distribution - Engineered Software, Inc., Available from: http://www.engineeredsoftware.com/nasa/weibull.htm, Access in: 04.05.2018.
  • [38] The Weibull Distribution - ReliaWiki, Available from: http://reliawiki.org/index.php/The_Weibull_Distribution, Access in: 04.05.2018.
  • [39] Q. Xin, Diesel Engine System Design, Elsevier, 2011.
  • [40] Reliability Function, this issue's Reliability Basic - Weibull.com, Available from: http://weibull.com/hotwire/issue7/relbasics7.htm, Access in: 04.05.2018.
  • [41] GOST 27.002-89, Industrial product dependability. General concepts. Terms and definitions, M.: Izd-vo standartov, 1990 (in Russian).
  • [42] 1.3.6.6.8. Weibull Distribution, Available from: http://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm, Access in: 04.05.2018.
  • [43] F. Scholz, Inference for the Weibull Distribution, Stat 498B lndustrial Statistics, 2008, Available from: https//www.stat.washington.edu/people/fritz/DATAFILES498B2008/WeibullBounds.pdf, Access in: 04.05.2018.
  • [44] Parameter Estimation - ReliaWiki, Available from: http://reliawiki.org/index.php/Parameter_Estimtition, Access in: 04.05.2018.
  • [45] F.N. Nwobi, C.A. Ugomma, A comparison of methods for the estimation of weibull distribution parameters, Metodološki zvezki 11/1 (2014) 65-78, Available from: https://stat-d.si/mz/mz11.1/Nwobi2014.pdf, Access in: 04.05.2018.
  • [46] Measures of Central Tendency, Spread, and Shape, Available from: http://faculty.smu.edu/kyler/courses/7311/intro_measures4up.pdf, Access in: 04.05.2018.
  • [47] 3.1.3.1. Distribution (Location, Spread and Shape), Available from: https://www.itl.nist.gov/div898/handbook/ppc/section1/ppc131.htm, Access in: 04.05.2018.
  • [48] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, Second Edition, The Art of Scientific Computing, Cambridge University Press, New York, USA, 1992, Available from: https://www2.units.it/ipl/students_area/imm2/files/Numerical_Recipes.pdf, Access in: 04.05.2018.
  • [49] A.T. Marmoza, Theory of Statistics: tutorial, Second Edition, K.: Tsentr uchbovoi literatury, 2013 (in Ukrainian).
  • [50] Weibull Distribution - from Wolfram MathWorld. Available from: http://mathworld.wolfram.com/WeibullDistribution.html, Access in: 04.05.2018.
  • [51] J. Mun, Advanced Analytical Models: Over 800 Models and 300 Applications from the Basel II Accord to Wall Street and Beyond, John Wiley & Sons, 2008, doi: https://doi.org/10.1002/9781119197096.app03, Access in: 04.05.2018.
  • [52] Distribution (Weibull) Fitting, Available from: https://ncss-wpengine.netdna-ssI.com/wp-content/themes/ncss/pdf/Procedures/NCSS/DistributionWeibull-Fitting.pdf, Access in: 04.05.2018.
  • [53] Weibull Distribution, Available from: http://user.engineering.uiowa.edu/-dbricker/active%20learning/%20cases/Stochastic/Weibull_tables.PDF, Access in: 04.05.2018.
  • [54] P.C. Chu, G. Galanis, Y.H. Kuo, Statistical Structure of Global Significant Wave Heights, Proceedings of the 20th Conference on Probability and Statistics in Atmospheric Sciences, Atlanta, 17-21 January 2010, Available from: https://calhoun.nps.edu/bitstream/handle/10945/36297/sig_wave.pdf?sequence=1, Access in: 04.05.2018.
  • [55] Weibull Distribution Topics in Actuarial Modeling, Available from: https://actuarialmodelingtopics.wordpress.com/tag/weibull-distribution/, Access in: 04.05.2018.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a6293f2-659e-40d5-aaad-4724529037f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.