PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aquaculture waste management

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fish and seafood production has grown steadily in the past five decades. Total world fisheries and aquaculture production reached 167.2 million tonnes in 2014 [1]. Intensive fish production triggers growth in the amount of waste processing, which has serious environmental impacts. Utilization and energy recovery from fish waste have become areas of interest for the global economy. Specialized methods and techniques have been developed to acquire biomethane, biodiesel and biofertilizer from fish biomass. Also, using physical, biochemical and thermochemical processes, relevant substances (such as fish protein hydrolysate, natural pigments, chitosan and collagen) can be obtained.
Twórcy
  • Research and Innovation Centre Pro-Akademia 9/11 Innowacyjna Street, 95-050 Konstantynów Łódzki, Poland
autor
  • Research and Innovation Centre Pro-Akademia 9/11 Innowacyjna Street, 95-050 Konstantynów Łódzki, Poland
autor
  • Research and Innovation Centre Pro-Akademia 9/11 Innowacyjna Street, 95-050 Konstantynów Łódzki, Poland
Bibliografia
  • [1] FAO., 2016, “The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all.” Rome. 200, 14-16.
  • [2] https://www.nasa.gov/press-release/nasa-noaa-data-show-2016-warmest-year-on-record-globally/, Data access: 17.02.2017.
  • [3] Arvanitoyannis, Ioannis S., and Aikaterini Kassaveti. "Fish industry waste: treatments, environmental impacts, current and potential uses." International journal of food science & technology 43.4 (2008): 726-745.
  • [4] Ward, A.J., Løes, A.K., 2011. The potential of fish and fish oil waste for bioenergy generation: Norway and beyond. Biofuels 2 (4), 375–387.
  • [5] Ackefors, H., Enell, M., 1994. The release of nutrient and organic matter from aquaculture systems in Nordic countries. J. Appl. Ichthyol. 10, 225–241.
  • [6] Arvanitoyannis, Ioannis S., and Persefoni Tserkezou. "Fish waste management." Seafood processing–Technology, quality and safety (2014): 263-309.
  • [7] Uddin, Md, et al. "Production of valued materials from squid viscera by subcritical water hydrolysis." (2010).
  • [8] Tomczak-Wandzel, Renata, Erik Levlin, and Östen Ekengren. "Biogas production from fish wastes in co-digestion with sewage sludge." IWA Specialist Conference Holistic Sludge Management 6-8 May 2013 Västerås Sweden. Svenska miljöinstitutet (IVL), 2013.
  • [9] Veluchamy, C., and Ajay S. Kalamdhad. "Biochemical methane potential test for pulp and paper mill sludge with different food/microorganisms ratios and its kinetics." International Biodeterioration & Biodegradation 117 (2017): 197-204.
  • [10] Hansen, T.L., Schmidt, J.E., Angelidaki, Il, Marca, E., Jansen, J.C, Mosbaek, H. & Christensen, T.H., (2003) Method for determination of methane potentials of solid organic waste. Waste Management, 24(4), 393-400.
  • [11] Kafle, Gopi Krishna, Sang Hun Kim, and Kyung Ill Sung. "Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics." Bioresource technology 127 (2013): 326-336.
  • [12] Eiroa, M., et al. "Evaluation of the biomethane potential of solid fish waste." Waste management 32.7 (2012): 1347-1352.
  • [13] Drosg, Bernhard, et al. "Nutrient Recovery by Biogas Digestate Processing." IEA Bioenergy (2015).
  • [14] http://www.biogas-info.co.uk/about/digestate/ , Data access 28.02.2017.
  • [15] Valeur, Ida. Speciation of heavy metals and nutrient elements in digestate. MS thesis. Norwegian University of Life Sciences, Ås, 2011.
  • [16] Koszel, Milan, and Edmund Lorencowicz. "Agricultural use of biogas digestate as a replacement fertilizers." Agriculture and Agricultural Science Procedia 7 (2015): 119-124.
  • [17] Yahyaee, R., B. Ghobadian, and G. Najafi. "Waste fish oil biodiesel as a source of renewable fuel in Iran." Renewable and Sustainable Energy Reviews 17 (2013): 312-319.
  • [18] Jayasinghe, Punyama, and Kelly Hawboldt. "A review of bio-oils from waste biomass: Focus on fish processing waste." Renewable and sustainable energy reviews 16.1 (2012): 798-821.
  • [19] IEA. IEA Bioenergy, Annual report 2006. International Energy Agency; 2006: 4-20.
  • [20] Kristinsson, Hordur G., and Barbara A. Rasco. "Fish protein hydrolysates: production, biochemical, and functional properties." Critical reviews in food science and nutrition 40.1 (2000): 43-81.
  • [21] C.M. Silva, R.A. dos Santos da Fonseca, C. „Prentice Comparing the hydrolysis degree of industrialization byproducts of Withemouth croaker (Micropogonias furnieri) using microbial enzymes.” International Food Research Journal, 21 (5) (2014), pp. 1757–1761.
  • [22] Villamil, Oscar, Henry Váquiro, and José F. Solanilla. "Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties." Food Chemistry 224 (2017): 160-171.
  • [23] Silva, J. F. X., et al. "Utilization of tilapia processing waste for the production of fish protein hydrolysate." Animal Feed Science and Technology 196 (2014): 96-106.
  • [24] Morimura, S., Nagata, H., Uemura, Y., Fahmi, A., Shigematsu, T. & Kida, K. (2002). Development of an effective process for utilization of collagen from livestock and fish waste. Process Biochemistry, 37, 1403–1412.
  • [25] Shahidi, Fereidoon, and Joseph A. Brown. "Carotenoid pigments in seafoods and aquaculture." Critical Reveiws in Food Science 38.1 (1998): 1-67.
  • [26] Sachindra, N. M., N. Bhaskar, and N. S. Mahendrakar. "Recovery of carotenoids from shrimp waste in organic solvents." Waste Management 26.10 (2006): 1092-1098.
  • [27] Aberoumand, Ali. "A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry." World Journal of Dairy & Food Sciences 6.1 (2011): 71-78.
  • [28] Veeruraj, Anguchamy, et al. "Isolation and characterization of collagen from the outer skin of squid (Doryteuthis singhalensis)." Food Hydrocolloids 43 (2015): 708-716.
  • [29] Bhagwat, Prashant K., and Padma B. Dandge. "Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries." Biocatalysis and Agricultural Biotechnology 7 (2016): 234-240.
  • [30] Ikoma et al. “Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas”, International Journal of Biological Macromolecules, 32 (2003), pp. 199–204.
  • [31] Safandowska, Marta, and Krystyna Pietrucha. "Effect of fish collagen modification on its thermal and rheological properties." International Journal of Biological Macromolecules 53 (2013): 32-37.
  • [32] Huang, Chun-Yung, et al. "Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process." Food chemistry 190 (2016): 997-1006.
  • [33] Tang, W. Joyce, et al. "Chitin is endogenously produced in vertebrates." Current Biology 25.7 (2015): 897-900.
  • [34] Hernández, Nacú, R. Christopher Williams, and Eric W. Cochran. "The battle for the “green” polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement." Organic & biomolecular chemistry 12.18 (2014): 2834-2849.
  • [35] Kumar, Majeti NV Ravi. "A review of chitin and chitosan applications." Reactive and functional polymers 46.1 (2000): 1-27.
  • [36] Iqbal, Javed, et al. "Adsorption of acid yellow dye on flakes of chitosan prepared from fishery wastes." Arabian Journal of Chemistry 4.4 (2011): 389-395.
  • [37] Rinaudo, Marguerite. "Chitin and chitosan: properties and applications." Progress in polymer science 31.7 (2006): 603-632.
  • [38] Hayes, Maria, et al. "Mining marine shellfish wastes for bioactive molecules: Chitin and chitosan ndash; Part A: extraction methods." Biotechnology journal 3.7 (2008): 871-877.
  • [39] Kumari, Suneeta, and Pradip Kumar Rath. "Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales." Procedia Materials Science 6 (2014): 482-489.
  • [40] Hossain, M. S., and A. Iqbal. "Production and characterization of chitosan from shrimp waste." Journal of the Bangladesh Agricultural University 12.1 (2014): 153-160.
  • [41] Nnali, K. E., and A. O. Oke. "The utilization of fish and fish farm wastes in biogas production:" a review"." Advances in Agriculture, Sciences and Engineering Research 3.2 (2013): 657-667.
  • [42] Kim, Joong Kyun. "Cost-effectiveness of converting fish waste into liquid fertilizer." Fisheries and aquatic sciences 14.3 (2011): 230-233.
  • [43] Ghaly, A. E., et al. "Fish Processing Wastes as a Potential Source of Proteins." Amino Acids and Oils: A Critical Review, J. Microb. Biochem. Technol 5.4 (2013): 107-129.
  • [44] C Sharma, Yogesh, et al. "Fast synthesis of high quality biodiesel from ‘waste fish oil’ by single step transesterification." Biofuel research journal 1.3 (2014): 78-80.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a58ed13-2b9f-4d06-b219-7f259b97a338
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.