PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of randomly distributed particles and matrix interfaces of epoxy-based multilayered composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the surface morphology of composites, the effect of the particle geometry like the size and shape of the filler materials, their dispersion efficiency and interfaces are analyzed by morphological characterization. According to the tensile tests, it was found that the composites fabricated with CuO exhibit increasing trends of tensile strength in all the experiments compared to that of the composites with TiO2, which is verified by the degree of composite crystallinity determined by the strong interfacial interaction as well as the size, shape and compactness of the filler particles as observed by SEM micrograph analysis using Mountains software. Evaluation of this analysis shows similar amplitude variations in all the PSD curves of the composites and indicate a fatigue-like behavior. The stable isotropic properties in the composite samples with CuO result in a better surface finish, which was also well defined in the analysis of its surface texture and density function. Due to all these positive correlations, a significant rising trend in tensile strength (55.50, 105.53 and 20.40%) was found in every composite modified with CuO in comparison to TiO2. The highest tensile strength of the fabricated composite incorporating the CuO functional filler was found to be 105.530%. Such composites with TiO2 and CuO having a tensile strength of 117.9 and 141.95 N/mm2 respectively, may be used for the interior design of aircraft, watercraft, offices, residences, car and sports accessories and others.
Rocznik
Strony
70--86
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Dhaka University of Engineering and Technology, Gazipur, Department of Mechanical Engineering, Gazipur-1707, Bangladesh
  • Dhaka University of Engineering and Technology, Gazipur, Department of Mechanical Engineering, Gazipur-1707, Bangladesh
Bibliografia
  • [1] Zhao Z., Dang H., Zhang C., Yun G.J., Li Y., A multi-scale modeling framework for impact damage simulation of triaxially braided composites, Composites Part A 2018, 110, 113-125.
  • [2] Cranford S.W., de Boer J., Van Blitterswijk C., Buehler M.J., Materiomics: anomics approach to biomaterials research, Adv. Mater. 2013, 25, 802-824.
  • [3] De Silva R.T., Soheilmoghaddam M., Goh K.L., Wahit M.U., Abd bee H., Sharifah C.S.-P., Pasbakhsh P., Influence of the processing methods on the properties of poly(lacticacid)/halloy site nanocomposites, Polym. Compos. 2016, 37, 861-869.
  • [4] Goh K.L., Aspden R.M., Mathias K.J., Hukins D.W.L., Finite-element analysis of the effect of material properties and fiber shape on stresses in an elastic fiber embedded in an elastic matrix in a fiber-composite material, Proceedings of the Royal Society of London 2004, 2339-2352.
  • [5] Fu S.Y., Feng X.Q., Lauke B., Mai Y.W., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites, Compos. B Eng. 2008, 39, 933-996.
  • [6] De Silva R.T., Pasbakhsh P.G., Goh K.L., Mishnaevsky L., 3-D Computational Model of Poly (Lactic Acid)/halloy site Nanocomposites: Predicting Elastic Properties and Stress Analysis, Polymer (United Kingdom) 2014, 55.
  • [7] Nath R.B., Fenner D.N., Galiotis C., The progressional approach to interfacial failure in carbon reinforced composites: elasto-plastic finite element modelling of interface cracks, Compos. Appl. Sci. Manuf. 2000, 31, 929-943.
  • [8] Goh K.L., Discontinuous-fiber Reinforced Composites, Fundamentals of Stress Transfer and Fracture Mechanics, Springer-Verlag, 1st ed., London 2017.
  • [9] Zabihi C., Ahmadi M., Nikafshar S., Preyeswary K.C., Naebe M., A technical review on epoxy-clay nanocomposites: structure, properties, and their applications in fiber reinforced composites, Composites Part B 2018, 135, 1-24.
  • [10] Kausar A., Review on polymer/halloysite nanotube nanocomposite, Polym. Plast. Technol. Eng. 2018, 57, 548-564.
  • [11] Lavagna L., Massella D., Pantano M.F., Bosia F., Pugnoand N.M., Pavese M., Grafting Carbon Nanotubes onto Carbon Fibers Doubles their Effective Strength and the Toughness of the Composite, Composites Science and Technology 2018.
  • [12] Mittal G., Rhee K.Y., Miskovic-Stankovic V., Hui D., Reinforcements in multi-scalepolymer composites: processing, properties, and applications, Composites Part B 2018, 138, 122-139.
  • [13] Liu X., Liu D., Lee J.H., Zheng Q., Du X., Zhang X., Xu H., Wang Z., Wu Y., Shen X., Cui J., Mai Y.W., Kim J.K., Spider web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors, ACS Appl. Mater. Interfaces 2018, 11, 2282-229.
  • [14] Latha P.S., Rao M.V., Investigation into effect of ceramic fillers on mechanical and tribological properties of bamboo-glass hybrid fiber reinforced polymer composites, Silicon 2018, 10(4), 1543-1550.
  • [15] Rahamathullah I., Shunmugam M.S., Mechanistic approach for prediction of forces in micro-drilling of plain and glass-reinforced epoxy sheets, Int. J. Adv. Manuf. Technol. 2014, 75, 1177-1187.
  • [16] Antil P., Modeling and multi-objective optimization during ECDM of silicon carbide reinforced epoxy composites, Silicon 2019, DOI: 10.1007/12633-019-00122-8.
  • [17] Tonoli G.H.D., Joaquim A.P., Arsene M.-A., Bilba K., Savastano H., Performance and durability of cement based composites reinforced with refined sisal pulp, Mater. Manuf. Process. 2007, 22, 149-156.
  • [18] Abral H., Dalimunthe M.H., Hartono J., Efendi R.P., Asrofi M., Sugiarti E., Characterization of tapioca starch biopolymer composites reinforced with micro scalewater hyacinth fibers, Starch/Staerke 2018, 70, 1-8.
  • [19] Ahamed A.R., Asokan P., Aravindan S., EDM of hybrid Al-SiCp-B4Cp and Al-SiCp-Glass pMMCs, International Journal of Advanced Manufacturing Technology 2009, 44, 5-6, 520-528.
  • [20] Zhou Y., Fan M., Chen L., Interface and bonding mechanisms of plant fiber composites: anoverview, Compos. Part B Eng. 2016, 101, 31-45.
  • [21] Antil P., Singh S., Singh S., Prakash C., Pruncu C.L., Metaheuristic approach in machinability evaluation of silicon carbide particle/glass fiber-reinforced polymer matrix composites during electrochemical discharge machining process, Measurement and Control 2019, DOI: 10.1177/0020294019858216.
  • [22] Miriyala S.M., Kim Y.S., Liu L., Grunlan J.C., Macromol. Chem and Phys., Wiley Online Library, 2008, 209, 23, 2399-2409.
  • [23] Chaturvedi S.K., An experimental investigation of tensile strength of glass composite materials with calcium carbonate (CaCO3) filler, International Journal of Emerging Trends in Engineering and Development 2012, 6(2), 303-309.
  • [24] Devendra K., Rangaswamy T., Determination of mechanical properties of Al2O3, Mg(OH)2 and SiC filled E-glass/epoxy composites, International Journal of Engineering Research and Applications 2012, 2028-2033.
  • [25] CaO Y., Goda K., Shibata S., Development and mechanical properties of baggage fiber reinforced composites, Advanced Composite Material, Taylor and Francis 2007, 16, 4, 283-298.
  • [26] Jacob M., Thomas S., Varughese K.T., Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites, Composite Science and Technology 2004, 64, 955-965.
  • [27] Hamdan M.H.M, Siregar J.P., Thomas S., Jacob M.J., Jafar J., Tezara C., Mechanical performance of hybrid woven jute-reselle-reinforced polyester composites, Polymers and Polymer Composites 2019, 27, 7, 407-418.
  • [28] Magendran S.S., Khan F.S.A, Mubarak N.M., Khalid M., Walvekar R., Abdullah E.C., Nizamuddin S., Karri R.R., Synthesis of organic phase change materials by using carbon nanotubes as filler materials, Nanostructures and Nanoobjects 2019, 19(100361).
  • [29] Alam M.S., Chowdhury M.A., Water and brine absorption capacity of epoxy based glass fiber composite modified with CaCO3-Al2O3-MgO-TiO2/CuO filler materials, Mater. Res. Express 2019, 6(115311).
  • [30] Alam M.S., Chowdhury M.A., Characterization of epoxy composites reinforced with CaCO3-Al2O3-MgO-TiO2/CuO filler materials, Alexandria Engineering Journal, 2020, DOI: 10.1016/j.aej.2020.07.017.
  • [31] Lindeberg T., Edge detection and ridge detection with automatic scale selection, International Journal of Computer Vision 1998, 30(2), 117-154.
  • [32] Lovell E.C., Scott J., Amal R., NiSiO2 catalysts for the carbon dioxide reforming of methane: Varying support properties by flame spray pyrolysis, Molecules 2015, 20(3), 4594-4609.
  • [33] Mang Y., Zhang. Z. Yin H., Me. T., Automatic defection of particle size distribution by image analysis based on local adaptive carry edge detection and modified circular hough transform, Micron 2017, DOI. 10.1016/s.micron.2017.12.002.
  • [34] en.wikipedia.org>wiki>Edge detection, extracted on 10 December 2020.
  • [35] Rajeswari A., Jackcina S.C.E., Gopi S., Jayaraj K., Pius A., Characterization studies of polymer-based composites related to functionalized filler-matrix interface, Interfaces in Particle and Fiber Reinforced Composites 2020, 219-250, DOI:10.1016/b978-0-08-102665-6.00009-1.
  • [36] Salcedo M.C., Coral I.B., Ochoa G.V., Characterization of surface topography with abbott firestone curve, Contemporary Engineering Sciences 2018, 11. 68, 3397-3407.
  • [37] Alam M.S., Chowdhury M.A., Characterization of epoxy composites reinforced with CaCO3-Al2O3-MgO-TiO2/CuO filler materials, Alexandria Eng. J. 2020, DOI: 10.1016/j.aej.2020.07.01.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a538664-0f62-42fd-8e4f-d2dddd9feab8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.