PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of Li-Ion battery state-of-health with Gaussian processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of lithium-ion cells, which degrade in time on their own and while used, causes a significant decrease in total capacity and an increase in inner resistance. So, it is important to have a way to predict and simulate the remaining usability of batteries. The process and description of cell degradation are very complex and depend on various variables. Classical methods are based, on the one hand, on fitting a somewhat arbitrary parametric function to laboratory data and, on the other hand, on electrochemical modelling of the physics of degradation. Alternative solutions are machine learning ones or non-parametric ones like support-vector machines or the Gaussian process (GP), which we used in this case. Besides using the GP, our approach is based on current knowledge of how to use non-parametric approaches for modeling the electrochemical state of batteries. It also uses two different ways of dealing with GP problems, like maximum likelihood type II (ML-II) methods and the Monte Carlo Markov Chain (MCMC) sampling.
Rocznik
Strony
643--659
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
autor
  • Department of Automatic Control and Robotics, AGH University of Science and Technology Kraków, Poland
  • Department of Automatic Control and Robotics, AGH University of Science and Technology Kraków, Poland
Bibliografia
  • [1] Tagade P., Hariharan K.S., Ramachandran S., Khandelwal A., Naha A., Kolake S.M., Han S.H., Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis, Journal of Power Sources, vol. 445, 227281 (2020), DOI: 10.1016/j.jpowsour.2019.227281.
  • [2] Li X., Wang Z., Yan J., Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression, Journal of Power Sources, vol. 421, pp. 56–67 (2019), DOI: 10.1016/j.jpowsour.2019.03.008.
  • [3] Dillon S.J., Sun K., Microstructural design considerations for Li-ion battery systems, Current Opinion in Solid State and Materials Science, vol. 16, no. 4, pp. 153–162 (2012), DOI: 10.1016/j.cossms.2012.03.002.
  • [4] Li X., Yuan C., Li X., Wang Z., State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression, Energy, vol. 190, 116467 (2020), DOI: 10.1016/j.energy.2019.116467.
  • [5] Garay F., Huaman W., Vargas-Machuca J., State of health diagnostic and remain useful life prognostic for lithium-ion battery by combining multi-kernel in Gaussian process regression, 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing, pp. 1–4 (2021), DOI: 10.1109/INTERCON52678.2021.9532733.
  • [6] Greenbank S., Howey D., Automated Feature Extraction and Selection for Data-Driven Models of Rapid Battery Capacity Fade and End of Life, in IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 2965–2973 (2022), DOI: 10.1109/TII.2021.3106593.
  • [7] Liu J., Saxena A., Goebel K., Saha B., Wang W., An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries, in Conference of the Prognostics and Health Management Society (2010), DOI: 10.36001/phmconf.2010.v2i1.1896.
  • [8] Fermín P., McTurk E., Allerhand M., Medina-Lopez E., Anjos M.F., Sylvester J., dos Reis G., Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells, Energy and AI, vol. 1, in press (2020), DOI: 10.1016/j.egyai.2020.100006.
  • [9] Richardson R.R., Osborne M.A., Howey D.A., Gaussian process regression for forecasting battery state of health, Journal of Power Sources, vol. 357, pp. 209–219 (2017), DOI: 10.1016/j.jpowsour.2017.05.004.
  • [10] Tagade P., Hariharan K.S., Ramachandran S., Khandelwal A., Naha A., Mayya S., Kolake S., Han H., Deep Gausian process regression for lithium-ion battery health prognosis and degradation mode diagnosis, Journal of Power Sources, vol. 445, pp. 227–281 (2020), DOI: 10.1016/j.jpowsour.2019.227281.
  • [11] Zheng X., Deng X., State-of-health prediction for lithium-ion batteries with multiple Gaussian process regression model, IEEE Access, vol. 7, pp. 150383–150394 (2019), DOI: 10.1109/ACCESS.2019.2947294.
  • [12] Rasmussen C., Williams C.K.I., Gaussian Processes in machine learning, MIT Press (2006), DOI:10.7551/mitpress/3206.003.0001.
  • [13] Davis R.A., Encyclopedia of Environmetrics, Gaussian Process, In Encyclopedia of Environmetrics; American Cancer Society (2006), DOI: 10.1002/9780470057339.vag002.
  • [14] Garnett R., Bayesian Optimization, Cambridge University Press (2022).
  • [15] Blum M., Riedmiller M., Optimization of gaussian process hyperparameters using Rprop, pp. 339–344 (2013).
  • [16] Raes W., Dhaene T., Stevens N., On the Usage of Gaussian Processes for Visible Light Positioning with Real Radiation Patterns, In Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–6 (2021), DOI: 10.1109/ISWCS49558.2021.9562197.
  • [17] Chen T., Morris J., Martin E., Gaussian process regression for multivariate spectroscopic calibration, Chemometrics and Intelligent Laboratory Systems, vol. 87, no. 1, pp. 59–71 (2007), DOI:10.1016/j.chemolab.2006.09.004.
  • [18] He Y.J., Shen J.N., Shen J.F., Ma Z.F., State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach, AIChE Journal, vol. 61, no. 5, pp. 1589–1600 (2015), DOI: 10.1002/aic.14760.
  • [19] Brevault L., Balesdent M., Hebbal A., Overview of Gaussian process based multi-fidelity techniques with variable relationship between fidelities (2020), DOI: 10.48550/arXiv.2006.16728.
  • [20] Richardson R.R., Osborne M.A., Howey D.A., Battery health prediction under generalized conditions using a Gaussian process transition model, Journal of Energy Storage, vol. 23, pp. 320–32 (2019), DOI: 10.1016/j.est.2019.03.022.
  • [21] Greenbank S., Howey D., Automated feature selection for data-driven models of rapid battery capacity fade and end of life, Transactions on Industrial Informatics, Institute of Electrical and Electronics Engineers (IEEE), vol. 18, no. 5, pp. 2965–2973 (2022), DOI: 10.1109%2Ftii.2021.3106593.
  • [22] Bole B., Kulkarni C., Daigle M., Randomized battery usage data set, NASA AMES Prognostics Data Repository, NASA Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA (2014).
  • [23] Dudek A., Baranowski J., Gaussian Processes for Signal Processing and Representation in Control Engineering, Appl. Sci., vol. 12, no. 10, 4946 (2022), DOI: 10.3390/app12104946.
  • [24] Titsias M., Lawrence N., Rattray M., Markov chain Monte Carlo algorithms for Gaussian processes. Inference and Estimation in Probabilistic Time-Series Models, Bayesian Time Series Models, pp. 295–316 (2008), DOI: 10.1017/CBO9780511984679.015.
  • [25] Vanhatalo J., Sparse Log Gaussian Process in Spatial Epidemiology, Gaussian Processes in Practice in Proceedings of Machine Learning Research, vol. 1, pp. 73–89 (2022).
  • [26] Dudek A., Baranowski J., Mularczyk R., Transient Anomaly Detection Using Gaussian Process Depth Analysis, In Proceedings of the 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 221–226 (2021), DOI: 10.1109/MMAR49549.2021.9528470.
  • [27] Cai L., Lin J., Liao X., An estimation model for state of health of lithium-ion batteries using energy based features, J. Energy Storage, vol. 46 (2021), DOI: 10.1016/j.est.2021.103846.
  • [28] Burzyński D., Useful energy prediction model of a Lithium-ion cell operating on various duty cycles, Eksploatacja i Niezawodność, vol. 24, no. 2, pp. 317–329 (2022), DOI: 10.17531/ein.2022.2.13.
  • [29] Liu K., Tang X., Teodorescu R., Gao F., Meng J., Future Ageing Trajectory Prediction for Lithium-ion Battery Considering the Knee Point Effect, IEEE Trans. Energy Convers., vol. 8969, no. c, pp. 1–10 (2021), DOI: 10.1109/TEC.2021.3130600.
  • [30] Liu K., Shang Y., Ouyang Q., Widanage W.D., A Data-Driven Approach with Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery, IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3170–3180 (2021), DOI: 10.1109/TIE.2020.2973876.
  • [31] Burzyński D., Kasprzyk L., A novel method for the modeling of the state of health of lithium-ion cells using machine learning for practical applications, Knowledge-Based Syst., vol. 219, 106900 (2021), DOI: 10.1016/j.knosys.2021.106900.
  • [32] Su C., Chen H., Wen Z., Prediction of remaining useful life for lithium-ion battery with multiple health indicators, Eksploatacja i Niezawodność, vol. 23, no. 1, pp. 176–183 (2021), DOI: 10.17531/ein.2021.1.18
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a51b998-5053-415d-ae8f-d11fafcf2965
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.