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The development of velocity, temperature and concentration fields of an incompressible viscous electrically 
conducting fluid, caused by impulsive stretching of the surface in two lateral directions and by suddenly 
increasing the surface temperature from that of the surrounding fluid in a saturated porous medium is studied. The 
partial differential equations governing the unsteady laminar boundary layer flow are solved analytically. For 
some particular cases, closed form solutions are obtained, and for large values of the independent variable 
asymptotic solutions are found. The surface shear stress in x and y directions and the surface heat transfer and 
surface mass transfer increase with the magnetic parameter and with permeability parameter and the stretching 
ratio, and there is a smooth transition from the short-time solution to the long-time solution. 
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1. Introduction 
 
 The flow with heat and mass transfer problem in the boundary layer induced by a continuously 
moving or stretching surface is important in many manufacturing processes.  In industry, polymer sheets and 
filaments are manufactured by continuous extrusion of the polymer from a die to a wind up roller which is 
located at a finite distance away. The thin polymer sheet constitutes a continuously moving surface with a 
non-uniform velocity through an ambient fluid. Crane (1970) investigated the flow due to a stretching 
surface in an otherwise ambient fluid. Since then several authors (Gupta and Gupta, 1977; Chakrabarti and 
Gupta, 1979; Carraghar and Crane, 1982; Dutta et al., 1985; Jeng et al., 1986; Dutta, 1989; Andersson, 1995; 
Chaim, 1996; Vajravelu and Hadjinicolaou, 1997) have studied various aspects of this problem such as the 
effects of surface mass transfer, magnetic field, arbitrary stretching velocity, variable thermal conductivity or 
wall temperature (heat flux).  
 Veena et al. analysed heat transfer in a fluid past a linearly stretching sheet with varying thermal 
conductivity and studied internal heat generation. Pravin et al. considered a non-Newtonian Magnetohydro-
dynamic flow over a stretching sheet with heat and mass transfer.  
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Veena et al investigated the heat transfer flow in a visco-elastic fluid past a stretching sheet with viscous 
dissipation and internal heat generation. Subhash and Veena studied the oscillatory motion of a visco-elastic 
fluid past a stretching sheet. Further Pravin et al. studied the unsteady motion of an electrically conducting 
visco-elastic fluid over a stretching sheet in a saturated porous medium with suction/blowing.  
 But all the above studies dealt with two-dimensional flows which are different from that of the 
Blasius flow over a semi-infinite plate due to the entrainment of the fluid. Thus Wang (1984) considered the 
three dimensional flow caused by a stretching flat surface in two lateral directions in an otherwise ambient 
fluid. 
 Takhar et al. (2001) studied the unsteady three dimensional MHD flow due to the impulsive motion 
of a strestching surface and obtained several closed form solutions. They showed that the surface shear 
stresses in x and y directions and the surface heat transfer increase with the magnetic field and the stretching 
ratio. In some cases, the flow field could be unsteady due to a sudden stretching of the flat sheet when the 
surface is impulsively stretched with certain velocity, the inviscid flow is developed instantaneously. The 
flow problem caused by the impulsive motion of the flat surface or the wedge has been investigated by many 
authors (Hall, 1969; Dennis, 1972; Watkins, 1975; Smith, 1967; Nanbu, 1971; Williams and Rhyne, 1980; 
Eringen and Maugin, 1990; Abromowitz and Stegun, 1972). 
 In this present paper, we considered an unsteady laminar viscous boundary layer flow of an 
electrically conducting fluid induced by the impulsive stretching of a flat surface in two lateral directions in 
an otherwise quiescent fluid embedded in a porous medium with heat and mass transfer. 
 

 
 

Fig.1. Physical model and co-ordinate system. 
 

 The problem is formulated in such a manner that for a small time it reduces to that of the Rayleigh 
type of flow and for large time it reduces to that of the Wang type flow. The steady state results without the 
magnetic field and porous medium are compared with those of Wang (1984) and are found to be in excellent 
agreement. 
 
2. Mathematical formulation 

 
 We consider an unsteady laminar incompressible flow of an electrically conducting fluid over a flat 
surface in two lateral directions in an otherwise quiescent fluid in a porous medium with heat and mass 
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transfer. At the same time, the wall temperature is raised from  to w wT T T T   and wall concentration is 

raised from  to w wC C C C  . The magnetic field is applied in the z-direction. It is assumed that the 

magnetic Reynolds number is small, i.e., Rm=0  V L << 1, where 0 is the magnetic permeability,  is the 
electrical conductivity and V, L are the characteristic velocity and length, respectively. Under these 
conditions we can neglect the effect of the induced magnetic field in comparison to the applied magnetic 
field. The electrical current flowing in the fluid gives rise to an induced magnetic field if the fluid were an 
electrical insulator, but here we have taken the fluid to be electrically conducting and embedded in a porous 

medium. Hence, the applied magnetic field B0 gives rise to magnetic forces - and2 2
x 0 y 0F B u F B v     

and applied porous media gives rise to and
' 'x yG u G v

k k

 
   in x and y directions, respectively. The 

effects of viscous dissipation, Ohmic heating and Hall current are neglected. The wall and ambient 
temperatures and concentrations are considered to be constant. Under the above assumptions, the boundary 
layer equations governing the unsteady laminar flow due to an impulsive motion are given by Wang (1984), 
Takhar et al. (2001) as follows. 
 

  
u v w

0
x y z

  
  

  
, (2.1) 

 

  
'

22
0

2

B uu u u u u
u v w u

t x y z ky

     
     

    
, (2.2) 

 

  
'

22
0

2

B vv v v v v
u v w v

t x y z ky

     
     

    
, (2.3) 

 

  
2

2

T T T T T
u v w

t x y z z

    
   

    
, (2.4) 

 

  
2

2

C C C C C
u v w D

t x y z z

    
   

    
. (2.5) 

 
 The initial conditions are given by  
 
  u(x, y, z, t) = v(x, y, z, t) = w(x, y, z, t) = 0, 
 
  T(x, y, z, t) = T              for        t < 0, (2.6) 
 
  C(x, y, z, t) = C             for         C < 0.   
 
 The boundary conditions for t 0 are given by 
 
  u(x, y, 0, t) = uw = a0x;             v(x, y, 0, t) = vw = b0y, 
 

  w(x, y, 0, t) = 0;                      T(x, y, 0, t) = Tw,               C(x, y, 0, t) = Cw,                          
   (2.7) 
  u(x, y, ∞, t) = v(x, y, ∞, t)  = 0, 
 

  T(x, y, ∞, t) = T,                C(x, y, ∞, t) = C. 
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 Here x, y and z are the longitudinal, transverse and normal directions, respectively: t is the time, T is 
the temperature, C is the concentration, B is the magnetic field applied, k is the porous parameter in the x- 
direction, uw and vw are the surface velocities in x and y directions, respectively, the subscripts w and ; 
denote conditions at the wall and in the ambient fluid, respectively. 

 We make use of the scales , * or , *w w wu t u u tz
R t z t

x x xt
   


 which are valid for small and 

large times, respectively. Hence, one has to find such scales where both small and large time solutions fit in 
properly. Defining 
 

   , exp * , * ,0
0

a
z 1 t t a t a 0     


, 
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and substituting relations (2.8) in Eqs (2.1) to (2.5) we find that Eq.(2.1) is identically satisfied and Eqs 
(2.2)-(2.5) reduce to 
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 The corresponding boundary conditions are given by 
 

         , , , , , , , ,0f 0 0 f 0 1 S 0 0 S 0 C          
 

     , , , ,g 0 1 h 0 1     
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         , , , , .f S g h 0              (2.13) 

 
 Here  is the dimensionless transformed similarity variable, t* and  are dimensionless times, f and 
S are the dimensionless velocity components along the x and y directions, respectively: g is the 
dimensionless temperature and h is the dimensionless concentration, C0 is the ratio of the surface velocity 
gradients along the y and x directions: Pr is the Prandtl number, Sc is the Schmidt number and the suffix 
denotes a partial derivative with respect to . 
 It is justified that Eqs (2.9)-(2.12) are parabolic partial differential equations, but for =0 (t*=0) and 
=1 (t*) they reduce to ordinary differential equations. For ,0 Eqs (2.9)-(2.12) reduce to 
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 For =1, Eqs (2.9)-(2.12) are reduced to 
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 The boundary conditions for Eqs (2.14)-(2.17) and (2.18)-(2.21) become 
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3. Analytical solution 

 
 Equations (2.14)-(2.17) are linear equations and the solutions to those equations satisfying the 
boundary conditions (2.22) are obtained as 
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where     erfc erf1    , 
 

     erf exp 2
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  
  . 

 

 Equations (2.18)-(2.21) for C0=0 (two-dimensional case) admit closed form solutions.   
For C0=0 and S=0 Eq.(2.19) is not required. 
For C0=0, the solution of Eq.(2.18) under the boundary conditions (2.22) is given by 
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

. (3.2) 

 
 The solutions of Eqs (2.20) and (2.21) using the solution (3.2) in terms of Kummer’s function F 
(Abromowitz and Stegun, 1972) are given by 
where 
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 The dimensionless temperature gradient and concentration gradient at the wall are expressed as 
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 (3.6) 

 
where F is Kummer’s function. Also, for C0=0, =1, (Mn=0, k2=0) and Pr=Sc=1, the solutions g and h can 
be expressed in a simple form, and given by 
 

   exp
e

g 1 e
e 1

    
, 

   (3.7) 

   exp
e

h 1 e
e 1

    
.   

 
4. Asymptotic solution 

 
 For large  when =1, f0, S0, g0, h0. Hence, the asymptotic behaviour of f and S, g and 
h is verified as 
 

     
lim lim

;1 2f 0 S 0     
 

. (4.1) 

 
 Hence, for large (), we get 
 
  f = 1 + F,             S = 2+S,             g = G,               h = H,              3 = 1+2  
 
where F, S, G and H are small, linearizing Eqs (2.18)-(2.21) we get 
 
  F() + 3 F()  (Mn+k2) F() = 0, (4.2) 
 
  S() + 3 S()  (Mn+k2) S() = 0, (4.3) 
 
  G() + Pr 3 G() = 0, (4.4) 
 
  H() + Sc 3 H() = 0. (4.5) 
 
 The boundary conditions as  are given by 
 

  F = S = G = H = 0. (4.6) 
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 Equations (4.3)-(4.5) are linear differential equations with constant co-efficients. Thus their solutions 
satisfying the boundary conditions (4.6) are obtained as 
 
   exp1 4F S A     , (4.7) 

 

   exp Pr2 3G A       , (4.8) 

 

   exp Sc3 3H A        (4.9) 

 

where    /1 22
4 3 3 24 Mn k 2

         
. Here 1, 2, 3, 4 are constants and A1, A2 and A3 are some 

arbitrary constants. It follows from Eqs (4.7)-(4.9) that F, S, G and H (hence, f, S, g, h) tend to zero in an 
exponential manner as , if 3>0. 
 
5. Results and discussion 

 
 Figures 1 and 2 show the variation of the surface shear stresses in x and y directions 

   , ; ,f 0 S 0        for different values of permeability parameter k2 and Mn = 1.0 when C1=0.5 and 

Pr=0.7. From the figures we observe that at the start of the motion (=0), the surface shear stresses are 
independent of k2.The surface shear stresses increase with the permeability k2 due to the enhanced Lorentz 
force which imparts additional momentum into the boundary layer. This reduces the boundary layer 
thickness which, inturn, increases the surface shear stress. 
 

 
Fig.1.  Effect of the permeability parameter k2 on the surface shear stress in the x-direction for 0    1 and 

for Mn=1.0. 
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Fig.2.  Effect of the permeability parameter k2 on the surface shear stress in the Y-direction, i.e., S (, 0) 

for 01 and for Mn=1.0. 
 

 The variations of surface shear stresses in x and y directions with dimensionless time , for several 
values of the stretching parameter C1(0C11) when k2=1.0 and Mn=1.0 and Pr=0.7 are presented in Figs 3 
and 4 when C1=0, S(, 0)=0, as the problem reduces to the two dimensional case. The surface shear 
stresses in the x and y directions (f(, 0), S(, 0) for 0C11 increase with  almost linearly. The effect 
is significantly pronounced on the surface shear stress in the y direction (S(, 0)). For Mn=k2=1.0, Pr=0.7 
the surface shear stresses in the y and x directions increase as C1 increases from 0.0 to 0.75. 
 

 
Fig.3.  Effect of the stretching parameter c1 on the surface shear stress in the x-direction, -f (, 0) for  

0    1 for k2 = 1.0 and Mn = 1.0. 
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Fig.4.  Effect of the stretching parameter C1 on the surface shear stress in the Y-direction -S (, 0) for  

0    1 and k2=1.0 and Mn=1.0. 
 
 In Figs 5a and 5b we have plotted graphs for the surface heat transfer g(, 0) for 01 with C1=0.5, 
Pr=0.7 for various values of the permeability parameter k2 and magnetic parameter Mn respectively. It is 
noticed from the figures that the surface heat transfer decreases with increasing values of k2 and Mn. This is due 
to the reduction in the functions f and S with increasing k2 and Mn which increases the thermal boundary layer 

thickness. This results in the reduction of the surface heat transfer   ,g 0   as k2 and Mn increase in the 

respective figures. As k2 increases from 0 to 3, g(, 0) decreases by about 33%. Also as Mn increases from 
zero to 5, g(, 0) decreases by about 36%. Also, for all k2 and Mn there is a smooth transition from the short-
time solution to the long-time solution. A similar trend was observed by Williams and Rhyne (1980) for the 
impulsive flow over a wedge in the absence of a porous medium and magnetic field. 
 The variation of the surface mass transfer h(, 0) for various values of the permeability parameter 
k2, magnetic parameter Mn with the Schmidt number Sc=3.0, C1=0.5 is shown in Figs 6a and 6b, 
respectively. It is observed from the figures that the surface mass transfer decreases with increasing values of 
k2 and Mn. It can be explained that the surface mass transfer h(, 0) increases with  for all k2 (Fig.6a) and 
for all Mn (Fig.6b) except h(, 0) for >0 which depends on k2 and Mn (0=0.42 when k2=0; Mn=0; 
0=0.8 for k2=Mn=1.0). 
 The effect of the stretching parameter C1 on the surface mass transfer is plotted in Fig.7a for 
k2=Mn=1.0 and Sc=3.0. It is found from the figure that the surface mass transfer h(, 0) increases with  
for 0 (0=0.8 when k2=Mn=1), C1=0.25. Beyond this value, it decreases. The surface mass transfer also 
increases with increasing values of the stretching parameter C1, because increasing values of C1 implies a 
higher surface velocity which accelerates the fluid in the boundary layer. 
 In Fig. 7b a graph of the surface mass transfer h(, 0) for various values of the Schmidt number is 
plotted and it is noticed from the figure that the surface mass transfer increases with increasing values of the 
Schmidt number Sc. 
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Fig.5a.  Effect of the permeability parameter k2 on the surface heat transfer - h (, 0) for 0   1 with 

C1=0.5, Pr=0.7 and Mn=1.0. 
 

 
Fig.5b.  Effect of the magnetic parameter Mn on the surface heat transfer -g (, 0) for 0   1 with c1=0.5 

and Pr=0.7 and k2=1. 
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Fig.6a.  Effect of the permeability parameter K2 on the surface heat transfer - h (, 0) for 0  1 with 

C1=0.5, Sc=3 and Mn=1.0. 
 

 
Fig.6b.  Effect of the magnetic parameter Mn on the surface mass transfer - h (, 0) for 0    1 with 

C1=0.5 Sc=3 and K2=1.0. 
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Fig.7a.  Effect of the stretching parameter C1 on the surface mass transfer - h (, 0) for 0    1 with 

Mn=1.0, Sc=3.0, k2=1.0. 
 

 
Fig.7b. Effect of the Schmidt number on the surface mass transfer - h (, 0) for 0 1 with Mn=1.0, 

k2=1.0, c1=0.5. 
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Conclusions 
 
 The surface shear stresses, the surface heat transfer and the surface mass transfer increase with the 
stretching parameter C1, permeability parameter k2 and magnetic parameter Mn and there is a smooth 
transition from the short-time solution to the long-time solution. The surface shear stresses increase with 
time , but the surface heat transfer and mass transfer increases upto a certain instant of time, but beyond this 
time they decrease. The stretching parameter C1, permeability parameter k2, magnetic parameter Mn and 
Schmidt number Sc affect most significantly the surface shear stress and surface mass transfer. 
 
Nomenclature 
 
 a0&b0 – velocity gradients in x and y directions 
 B0 – magnetic field strength 
 C – concentration 
 C1 – ratio of the surface velocity gradients along y and x directions 
 C – species concentration far away from wall 
 Cw – species concentration at the wall  
 D – mass diffusivity 
 Fx, Fy – magnetic forces in x and y directions 
 f&S – dimensionless velocity components along x and y directions 
 g – dimensionless temperature 
 h – dimensionless concentration 
 k – co-efficient of porosity 
 k2 – permeability parameter 
 L – characteristic length 
 Mn – magnetic parameter 
 Pr – Prandtl number 
 Rm – Reynolds number 
 Sc – Schmidt number 
 T – temperature 
 Tw – temperature at the wall 
 T – temperature far away from the wall 
 t – time 
 t*,  – dimensionless times 
 u, v, w – velocity components along x, y and z direction 
 V – characteristic velocity 
 x, y, z – space variables along longitudinal, transverse and normal directions 
  – thermal diffusivity 
  – dimensionless transformed similarity variable 
 0 – magnetic permeability 
  – kinematic viscosity 
  – density 
  – electrical conductivity 
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