PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Commercial Bio-Activator and a Traditional Bio-Activator on Compost Using Takakura Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Developing countries have a serious problem of limited land for handling organic waste. New, simple, and economical methods that can be applied maximally by people in developing countries are needed. This study aimed to evaluate commercial bio-activator (EM4) and traditional bio-activator in compost using the takakura method. Seven treatments were carried out to determine the most effective mixture to be applied to composting using the takakura method. The graph of fluctuations in temperature, humidity and pH in the composting process with seven different treatments shows that the activity of decomposing microorganisms is going well. A mixture of 2 kg organic waste and 500 ml EM4 has the values of potassium oxide (K2O), phosphorus pentoxide (P2O5), and nitrogen which meet the compost content requirements based on the Indonesian National Standard (SNI-19-7030-2004).
Rocznik
Strony
278--285
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia
  • Doctoral School in Management and Organizational Science, Faculty of Economy Science, Magyar Agrárés Élettudományi Egyetem, Kaposvár, Hungary
  • Faculty of Public Health, Universitas Jember, Jember, Indonesia
  • Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia
  • Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia
Bibliografia
  • 1. Adnan A.B., Basri A., Idawanni A., Iswoyo H. 2021. Application of coffee husk compost and em4 on growth and yield of chili pepper (Capsicum Frutescens L.). IOP Conference Series: Earth and Environmental Science 807(4): 42040. https://doi.org/10.1088/1755-1315/807/4/042040.
  • 2. Aslanzadeh S., Kho K., Sitepu I. 2020. An evaluation of the effect of takakura and effective microorganisms (EM) as bio activators on the final compost quality. IOP Conference Series: Materials Science and Engineering 742: 12017. https://doi.org/10.1088/1757-899x/742/1/012017.
  • 3. Central Bureau of Statistics. 2020. Indonesian Environmental Statistics. Central Bureau of Statistics, Republic of Indonesia. Jakarta. https://www.bps.go.id/publication/.
  • 4. Dewilda Y., Silvia S., Riantika M., Zulkarnaini, 2021. Food waste composting with the addition of cow rumen using the takakura method and identification of bacteria that role in composting. IOP Conference Series: Materials Science and Engineering 1041(1): 12028. https://doi.org/10.1088/1757-899x/1041/1/012028.
  • 5. Etesami H., Emami S., Ali Alikhani H. 2017. Potassium solubilizing bacteria (KSb): mechanisms, promotion of plant growth, and future prospects – a review. Journal of Soil Science and Plant Nutrition 17(4): 897–911. https://doi.org/10.4067/S0718-95162017000400005.
  • 6. Hendriani N., Juliastuti S.R., Masetya H.N., Saputra I.T.A. 2017. Composting of corn by-product using em4 and microorganism azotobacter sp. as composting organism. KnE Life Sciences 3 (5 SE-Articles). https://doi.org/10.18502/kls.v3i5.988.
  • 7. Holland C., Ryden P., Edwards H.C., Grundy M.M.L. 2020. Plant cell walls: impact on nutrient bioaccessibility and digestibility. Foods. https://doi.org/10.3390/foods9020201.
  • 8. Indasah R.W., Eliana A.D., Puspitasari Y., Rohmah M., Wulandari A. 2018. Potential microbe and quality of local microorganism solution (MOL) of banana hump based on concentration and old fermentation as bioactivator of railing. Indian Journal of Public Health Research and Development 9(10): 803–8. https://doi.org/10.5958/0976-5506.2018.01237.8.
  • 9. Iriti M., Scarafoni A., Pierce S., Castorina G., Vitalini S. 2019. Soil application of effective microorganisms (EM) maintains leaf photosynthetic efficiency, increases seed yield and quality traits of bean (Phaseolus Vulgaris L.) plants grown on different substrates. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20092327.
  • 10. Jacoby R., Peukert M., Succurro A., Koprivova A., Kopriva S. 2017. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Frontiers in Plant Science 8 (September): 1617. https://doi.org/10.3389/fpls.2017.01617.
  • 11. Kabirifar K., Mojtahedi M., Wang C., Tam V.W.Y. 2020. Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: a review. Journal of Cleaner Production 263: 121265. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121265.
  • 12. Mokrani K., Hamdi K., Tarchoun N. 2018. Potato (Solanum Tuberosum L.) response to nitrogen, phosphorus and potassium fertilization rates. Communications in Soil Science and Plant Analysis 49(11): 1314–30. https://doi.org/10.1080/00103624.2018.1457159.
  • 13. Morrissey J., and Guerinot M.L. 2009. Iron uptake and transport in plants: the good, the bad, and the ionome. Chemical Reviews 109 (10): 4553–67. https://doi.org/10.1021/cr900112r.
  • 14. Muscolo A., Papalia T., Settineri G., Mallamaci C., Jeske-Kaczanowska A. 2018. Are raw materials or composting conditions and time that most influence the maturity and/or quality of composts? Comparison of Obtained Composts on Soil Properties. Journal of Cleaner Production 195: 93–101. https://doi.org/10.1016/j.jclepro.2018.05.204.
  • 15. Palaniveloo K., Amran M.A., Norhashim N.A., Mohamad-Fauzi N., Fang Peng-Hui, Low Hui-Wen, Yap Kai-Lin, et al. 2020. Food waste composting and microbial community structure profiling. Processes. https://doi.org/10.3390/pr8060723.
  • 16. Papale M., Romano I., Finore I., Lo Giudice A., Piccolo A., Cangemi S., Di Meo V., Nicolaus B., Poli A. 2021. Prokaryotic diversity of the composting thermophilic phase: the case of ground coffee compost. Microorganisms. https://doi.org/10.3390/microorganisms9020218.
  • 17. Prajapati K. and Modi H.A. 2012. The importance of potassium in plant growth – a review. Indian Journal of Plant Sciences 1 (02–03): 177–86.
  • 18. Rajendran C., Hepziba S.J., Ramamoorthy K. 2009. Nutritional and Physiological Disorders in Crop Plants. Scientific Publishers.
  • 19. Rastogi M., Nandal M., Khosla B. 2020. Microbes as vital additives for solid waste composting. Heliyon 6(2): e03343–e03343. https://doi.org/10.1016/j.heliyon.2020.e03343.
  • 20. Sharma K. and Garg V.K. 2018. Solid-state fermentation for vermicomposting: A step toward sustainable and healthy soil. In: Current Developments in Biotechnology and Bioengineering: Current Advances in Solid-State Fermentation. Edited by Ashok Pandey, Christian Larroche, and Carlos Ricardo. Current Developments in Biotechnology and Bioengineering Soccol, 373–413. https://doi.org/10.1016/B978-0-444-63990-5.00017-7.
  • 21. Sutrisno E., Zaman B., Wardhana I.W., Simbolon L. and Emeline R. 2020. Is bio-activator from vegetables waste are applicable in composting system? IOP Conference Series: Earth and Environmental Science 448: 12033. https://doi.org/10.1088/1755-1315/448/1/012033.
  • 22. Vairagade V.S. and Vairagade S.A. 2019. Aerobic composting of household biodegradable waste – an experimental study. Edited by Sadhan Kumar Ghosh, 555–67. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-7290-1_47.
  • 23. Wang Wei-Kuang and Liang Chih-Ming, 2021. Enhancing the compost maturation of swine manure and rice straw by applying bioaugmentation. Scientific Reports 11(1): 6103. https://doi.org/10.1038/s41598-021-85615-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a470066-45c0-4857-b699-02d03203dafb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.