PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Introduction to Virtual Phased Arrays for Beamforming Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sound localization problems are usually tackled by the acquisition of data from phased microphone arrays and the application of acoustic holography or beamforming algorithms. However, the number of sensors required to achieve reliable results is often prohibitive, particularly if the frequency range of interest is wide. It is shown that the number of sensors required can be reduced dramatically providing the sound field is time stationary. The use of scanning techniques such as “Scan & Paint” allows for the gathering of data across a sound field in a fast and efficient way, using a single sensor and webcam only. It is also possible to characterize the relative phase field by including an additional static microphone during the acquisition process. This paper presents the theoretical and experimental basis of the proposed method to localise sound sources using only one fixed microphone and one moving acoustic sensor. The accuracy and resolution of the method have been proven to be comparable to large microphone arrays, thus constituting the so called “virtual phased arrays”.
Rocznik
Strony
81--88
Opis fizyczny
Bibliogr. 16 poz., fot., rys., wykr.
Twórcy
  • Institute of Sound and Vibration Research University of Southampton SO17 1BJ, Southampton, UK
  • Microflown Technologies Tivolilaan 205, 6824 BV, Arnhem, the Netherlands
  • Institute of Sound and Vibration Research University of Southampton SO17 1BJ, Southampton, UK
  • Microflown Technologies Tivolilaan 205, 6824 BV, Arnhem, the Netherlands
  • Microflown Technologies Tivolilaan 205, 6824 BV, Arnhem, the Netherlands
Bibliografia
  • 1. Gamier C, Blais J.-F., Lapointe R., Berry A. (2012), A time-domain analysis of 3D non-uniform, moving acoustic sources: application to source identification and absolute quantification. via beamforming, Proceeding of Berlin Beamforming Conference, Germany.
  • 2. Curlander J.C., McDonough R.N. (1991), Synthetic Aperture Radar: Systems and Signal Processing, John Wiley & Sons.
  • 3. Cutrona L.J. (1975), Comparison of sonar system. performance achievable using synthetic-aperture techniques with, the perform.an.ee achievable with, m.ore conventional means, J. Acoust. Soc. Amer., 58, 336-348.
  • 4. Cutrona L.J. (1977), Additional characteristics of synthetic-aperture sonar systems and a further comparison. with, nonsynthetic-aperture sonar systems, J. Acoust. Soc. Amer., 61, 1213-1217.
  • 5. De Hoop A.T. (2009), Electromagnetic radiation, from, moving, pulsed source distributions: The 3D time- domain. relativistic Doppler effect, Wave motion, 46, 74-77.
  • 6. Fernandez Comesana D., Wind J., Holland K.R., Grosso A. (2011), Far field source localization using two transducers: a virtual array approach., Proceedings of 18th International Congress of Sound and Vibration, Rio de Janeiro, Brazil.
  • 7. Fernandez Comesana D., Wind J., de Bree H.E., HOLLAND K.R. (2012), Virtual Arrays, a novel broadband source localization technique, Proceedings of NOVEM: Emerging Methods.
  • 8. Fernandez Comesana D., Fernandez Grande E., Tiana-Roig E, Holland K.R. (2013a), A novel deconvolution beamforming algorithm, for virtual phased arrays, Proceedings of Internoise.
  • 9. Fernandez Comesana D., Wind J., de Bree H.E., HOLLAND K.R. (2013b), Assessing Vehicle Exterior Noise Using a Virtual Phased Array (VPA), SAE Technical Paper 2013-01-1968, 2013.
  • 10. Fernandez Comesana D., Steltenpool S., Carrillo Pousa G., de Bree H.E., Holland K.R. (2013c), Scan and paint: theory and practice of a sound field visualization method, ISRN Mechanical Engineering, Volume 2013, ID 241958, 11 pages.
  • 11. Hayes M.P., Gough P.T. (2009), Synthetic aperture sonar: A review of current status, IEEE Journal of Oceanic Engineering, 34, 207-224.
  • 12. Johnson D.H., Dudgeon D.E. (1993), Array signal processing: Concepts and techniques, Prentice-Hall.
  • 13. Manolakis D.G., Ingle V.K., Kogon S.M. (2005), Statistical and adaptive signal processing, Artech House.
  • 14. Percival D.B., Walden, A.T. (1993), Spectral Analysis for Physical applications, Cambridge University Press.
  • 15. Shin K., Hammond J.K. (2008), Fundamentals of signal processing for sound and vibration engineers, John Wiley & Sons.
  • 16. Wiley C.A. (1985), Synthetic aperture radars, IEEE Trans. Aerosp. Electron. Syst. v. AES-21, pp. 440-443.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a460c56-d9ca-40b1-94fd-236984310580
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.