Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ zmian w zagospodarowaniu przestrzennym na warunki mikroklimatyczne i komfort cieplny, na przykładzie Manufaktury w Łodzi
Języki publikacji
Abstrakty
The paper presents the impact of changes in spatial development on microclimate parameters and thermal comfort. The research area covers the site of the current shopping and service centre Manufaktura in Łódź, located in the former factory complex of Izrael Poznański.Analyses were carried out for the area before and after the revitalisation process. The transformations of the building structure, reductions in green areas, and modifications of the surface were highlighted. Three-dimensional terrain models were prepared, and simulations were conducted using the ENVI-met program. The influence of development transformations on thermal comfort and microclimate was assessed. Due to the negative impact of the changes, adaptive solutions were proposed. The data obtained showed a positive influence of the implemented blue-green strategies on thermal conditions and the microclimate.
W artykule przedstawiono wpływ zmian w zagospodarowaniu przestrzennym na parametry mikroklimatu i komfort cieplny. Obszar badań obejmuje teren obecnego centrum handlowo-usługowego Manufaktura w Łodzi, zlokalizowanego w dawnym kompleksie fabrycznym Izraela Poznańskiego. Analizy przeprowadzono dla obszaru przed i po procesie rewitalizacji. Zwrócono uwagę na przekształcenia struktury zabudowy, redukcję terenów zielonych oraz modyfikacje powierzchni. Przygotowano trójwymiarowe modele terenu oraz przeprowadzono symulacje z wykorzystaniem programu ENVI-met. Oceniono wpływ przekształceń zabudowy na komfort termiczny i mikroklimat. Ze względu na negatywny wpływ zmian zaproponowano rozwiązania adaptacyjne. Uzyskane dane wykazały pozytywny wpływ wdrożonych strategii błękitno-zielonych na warunki termiczne i mikroklimat.
Czasopismo
Rocznik
Tom
Strony
139--158
Opis fizyczny
Bibliogr. 51 poz., fig., tab.
Twórcy
autor
- Institute of Environmental Engineering and Building Services; Faculty of Civil Engineering, Architecture and Environmental Engineering; Lodz University of Technology
autor
- Institute of Environmental Engineering and Building Services; Faculty of Civil Engineering, Architecture and Environmental Engineering; Lodz University of Technology
autor
- WJ Groundwater
Bibliografia
- [1] Mirzaei P. A., “Recent challenges in modeling of urban heat island”, Sustainable Cities and Society, vol. 19, (2015), pp. 200-206. https://doi.org/10.1016/j.scs.2015.04.001
- [2] Pison G., “World population: 8 billion today, how many tomorrow?”, Population & Societies, vol. 604, (2022), pp. 1-5. https://doi.org/10.3917/popsoc.604.0001
- [3] Baklanov A., Molina L. T., Gauss M., “Megacities, air quality and climate”, Atmospheric Environment, vol. 126, (2016), pp. 235-249. https://doi.org/10.1016/j.atmosenv.2015.11.059
- [4] Lee J.-Y. et al., “Future global climate: scenario-based projections and near term information”, [in:] Masson-Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M. I., Huang M., Leitzell K., Lonnoy E., Matthews J. B. R., Maycock T. K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, in Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2023, pp. 553-672. https://doi.org/10.1017/9781009157896.006
- [5] Koch F., “Cities as transnational climate change actors: applying a global south perspective”, Third World Quarterly, vol. 42(9), (2021), pp. 2055-2073. https://doi.org/10.1080/01436597.2020.1789964
- [6] Oke T., Maxwell G., “Urban heat island dynamics in Montreal and Vancouver”, Atmospheric Environment, vol. 9, (1975), pp. 191-200. https://doi.org/10.1016/0004-6981(75)90067-0
- [7] Geletič J., Lehnert M., Savić S., Milošević D., “Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities”, Building and Environment, vol. 156, (2019), pp. 21-32. https://doi.org/10.1016/j.buildenv.2019.04.011
- [8] Oke T. R., “The energetic basis of the urban heat island”, Quarterly Journal of the Royal Meteorological Society, vol. 108, (1982), pp. 1-24. https://doi.org/10.1002/qj.49710845502
- [9] Godowitch J. M., Ching J. K. S., Clarke J. F., “Evolution of the nocturnal inversion layer at an urban and nonurban location”, Journal of Applied Meteorology and Climatology, vol. 24, (1985), pp. 791-804. https://doi.org/10.1175/1520-0450(1985)024<0791:EOTNIL>2.0.CO;2
- [10] Wolters D., Brandsma T., “Estimating the urban heat island in residential areas in the Netherlands using observations by weather amateurs”, Journal of Applied Meteorology Climatology, vol. 51, (2012), pp. 711-721. https://doi.org/10.1175/JAMC-D-11-0135.1
- [11] Theeuwes N. E., Steeneveld G.-J., Ronda R. J., Rotach M. W., Holtslag A. A. M., “Cool city mornings by urban heat”, Environmental Research Letters, vol. 10, (2015), pp. 1-9. https://doi.org/10.1088/1748-9326/10/11/114022
- [12] Ferrari A., Kubilay A., Derome D., Carmeliet J., “The use of permeable and reflective pavements as a potential strategy for urban heat island mitigation”, Urban Climate, vol. 31 (2020), 100534, pp. 1-25. https://doi.org/10.1016/j.uclim.2019.100534
- [13] Equere V., Mirzaei P. A., Riffat S., “Definition of a new morphological parameter to improve prediction of urban heat island”, Sustainable Cities and Society, vol. 56, (2020), pp. 1-18. https://doi.org/10.1016/j.scs.2020.102021
- [14] Theeuwes N. E. Steeneveld G.-J., Ronda R. J., Holtslag A. A. M., “A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe”, International Journal of Climatology, vol. 37, (2017), pp. 443-454. https://doi.org/10.1002/joc.4717
- [15] Blazy R., Hrehorowicz-Gaber H., Hrehorowicz-Nowak A., “Adaptation of post-industrial areas as hydrological windows to improve the city’s microclimate”, Energies, vol. 14, (2021), 4488, pp. 1-20. https://doi.org/10.3390/en14154488
- [16] Croce S., D’Agnolo E., Caini M., Paparella R., “The use of cool pavements for the regeneration of industrial districts”, Sustainability, vol. 13, (2021), 6322, pp. 1-24. https://doi.org/10.3390/su13116322
- [17] Vatani M., Kiani K., Mahdavinejad M., Georgescu M., “Evaluating the effects of different tree species on enhancing outdoor thermal comfort in a post-industrial landscape”, IOP Science Environmental Research Letters, (2024), pp. 1-14. https://doi.org/10.1088/1748-9326/ad49b7
- [18] Fernández Águeda B., “Urban restructuring” in former industrial cities: urban planning strategies”, Territoire en Mouvement, vol. 24(23-24), (2014), pp. 3-14. https://doi.org/10.4000/tem.2527
- [19] Gan T., Chen J., Yao M., Cenci J., Zhang J., He Y., “Frontier revitalisation of industrial heritage with urban–rural fringe in China, in buildings”, vol. 14, (2024), 1256, pp. 1-19. https://doi.org/10.3390/buildings14051256
- [20] Nikolić M., Šćekić J., Drobnjak B., Takač E., “Examined in theory – applicable in practice: potentials of sustainable industrial heritage conservation in a contemporary context – the case of Belgrade”, Sustainability, vol. 16, (2024), 2820, pp. 1-36. https://doi.org/10.3390/su16072820
- [21] Nastran M., Kobal M., Eler K., “Urban heat islands in relation to green land use in European cities”, Urban Forestry & Urban Greening, vol. 37, (2019), pp. 33-41. https://doi.org/10.1016/j.ufug.2018.01.008
- [22] Wu X., Wang G., Yao R., Wang L., Yu D., Gui X., “Investigating Surface urban heat islands in South America based on MODIS data from 2003–2016”, Remote Sensing, vol. 11, (2019), 1212. pp. 1-16. https://doi.org/10.3390/rs11101212
- [23] Umezaki A. S., Ribeiro F. N. D., de Oliveira A. P., Soares J., de Miranda R. M., “Numerical characterization of spatial and temporal evolution of summer urban heat island intensity in São Paulo, Brazil”, Urban Climate, vol. 32, (2020), pp. 1-12. https://doi.org/10.1016/j.uclim.2020.100615
- [24] Tomczak A. A., Krzysztofik S., “Integrated change planning on the historic post-industrial area in the centre of the city. A case study of water and factory estate in Lodz”, in 56th ISOCARP World Planning Congress, Doha, Qatar, November 2020 – February 2021.
- [25] Tomczak A. A., Krzysztofik S., “Enhancing resilience in a post-industrial city through the urban regeneration of the downtown district. A case study of part of downtown Lodz called Nowa Dzielnica”, IOP Conference Series Materials Science and Engineering, vol. 1203(2), (2021) 022114, pp. 1-10. https://doi.org/10.1088/1757-899X/1203/2/022114
- [26] Heim D., Klemm K., “Modelowanie elementów mikroklimatu w otoczeniu obiektów zabytkowych”, Budownictwo i Architektura, 12(3), (2013) pp. 47-52, (in polish). https://doi.org/10.35784/bud-arch.1988
- [27] Klemm K., Heim D., “Wind flow aspects in the renovated, post - industrial urban area”, in 2005 World Sustainable Building Conference, Tokyo, 27-29 September 2005 (SB05Tokyo).
- [28] Klemm K., Heim D., “Local wind and rain conditions in semi-closed narrow corridors between buildings”, in 11th International IBPSA Conference, Glasgow, Scotland, July 27-30, 2009.
- [29] Stasiak A., “Centrum handlowo-rozrywkowe Manufaktura jako nowa atrakcja turystyczna Łodzi”, in: Burzyński T., Łabaj M., Dziedzictwo przemysłowe jako atrakcyjny produkt dla turystyki i rekreacji. Doświadczenia krajowe i zagraniczne (in polish), Górnośląska Wyższa Szkoła Handlowa im. W. Korfantego, Urząd Miejski w Zabrzu, 2005, Zabrze, Polska, pp. 215-220.
- [30] Peng L. L. H., Jim C. Y., “Green-roof effects on neighborhood microclimate and human thermal sensation”, Energies, vol. 6(2), (2013), pp. 598-618. https://doi.org/10.3390/en6020598
- [31] Battisti A., “Bioclimatic architecture and urban morphology. studies on intermediate urban open spaces”, Energies, vol. 13(21), (2020), 5819, pp. 1-20. https://doi.org/10.3390/en13215819
- [32] Črepinšek Z., Žnidaršič Z., Pogačar T., “Spatio-temporal analysis of the Universal Thermal Climate Index (UTCI) for the summertime in the period 2000–2021 in Slovenia: the implication of heat stress for agricultural workers”, Agronomy, vol. 13, (2023), 331, pp. 1-16. https://doi.org/10.3390/agronomy13020331
- [33] Habibi A., Kahe N., “Evaluating the role of green infrastructure in microclimate and building energy efficiency”, Buildings, vol. 14, (2024), 825, pp. 1-37. https://doi.org/10.3390/buildings14030825
- [34] Lassandro P., Zaccaro S. A., Di Turi S., “Mitigation and adaptation strategies for different urban fabrics to face increasingly hot summer days due to climate change”, Sustainability, vol. 16, (2024), 2210, pp. 1-29. https://doi.org/10.3390/su16052210
- [35] Sayad B., Helmi M. R., Osra O. A., Abed A. M., Alhubashi H. H., “Microscale investigation of Urban Heat Island (UHI) in Annaba City: unveiling factors and mitigation strategies”, Sustainability, vol. 16, (2024), 747, pp. 1-29. https://doi.org/10.3390/su16020747
- [36] Hien W. N., Ignatius M., Eliza A., Jusuf S. K., Samsudin R., “Comparison of STEVE and ENVI-met as temperature prediction models for Singapore context”, International Journal of Sustainable Building Technology and Urban Development, vol. 3, (2012), pp. 197-209. https://doi.org/10.1080/2093761X.2012.720224
- [37] Zheng G., Xu H., Liu F., Dong J., “Impact of plant layout on microclimate of summer courtyard space based on orthogonal experimental design”, Sustainability, vol. 16, (2024), 4425, pp. 1-20. https://doi.org/10.3390/su16114425
- [38] Lenzholer S., Kohl J., “Immersed in microclimatic space: microclimate experience and perception of spatial configuration in Dutch squares”, Landscape and Urban Planning, vol. 95, (2010), pp. 1-15. https://doi.org/10.1016/j.landurbplan.2009.10.013
- [39] Salata F., Golasi I., De Lieto Vollaro R., De Lieto Vollaro A., “Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data”, Sustainable City and Society, vol. 26, (2016), pp. 318-343. https://doi.org/10.1016/j.scs.2016.07.005
- [40] Gomaa M. M., El Menshawy A., Nabil J., Ragab A., “Investigating the impact of various vegetation scenarios on outdoor thermal comfort in low-density residential areas of hot arid regions”, Sustainability, vol. 16, (2024), 3995, pp. 1-23. https://doi.org/10.3390/su16103995
- [41] Bochenek A. D., Klemm K., “Effectiveness of tree pattern in street canyons on thermal conditions and human comfort. assessment of an urban renewal project in historical district in Lodz (Poland)”, Atmosphere, vol. 12(6), (2021), 751, pp. 1-19. https://doi.org/10.3390/atmos12060751
- [42] Żurański J. A., Wpływ warunków klimatycznych i terenowych na obciążenie wiatrem konstrukcji budowlanych, Prace Naukowe Instytutu Techniki Budowlanej, Warszawa, Polska, 2005.
- [43] Simiu E., “Equivalent statistic wind load for tall building design”, in 4th International Conference on Wind Effects on Buildings and Structures, Heathrow, UK, 8-12 September 1975.
- [44] Bochenek A. D., Klemm K., “The impact of passive green technologies on the microclimate of historic urban structures: the case study of Lodz”, Atmosphere, vol. 11(9), (2020), 974, pp. 1-18, https://doi.org/10.3390/atmos11090974
- [45] Abdel-Ghany A. M., Al-Helal I. M., Shady M. R., “Human thermal comfort and heat stress in an outdoor urban arid environment: a case study”, Advances in Meteorology, vol. 2013(2), (2013), 693541, pp. 1-7. http://dx.doi.org/10.1155/2013/693541
- [46] Höppe P., “The Physiological Equivalent Temperature – a universal index for the biometeorological assessment of the thermal environment”, International Journal of Biometeorology, vol. 43, (1999), pp. 71-75. https://doi.org/10.1007/s004840050118
- [47] Sikora S., Bioklimat Wrocławia, Scientific Dissertations of the Institute of Geography and Regional Development of the University of Lodz, 2008.
- [48] Acero J. A., Koh E. J. Y., Li X. X., Ruefenacht L. A., Pignatta G., Norford L. K., “Thermal impact of the orientation and height of vertical greenery on pedestrian in a tropical area”, Building Simulation, vol. 12, (2019), 973-984. https://doi.org/10.1007/s12273-019-0537-1
- [49] Sözen İ., Oral G. K., “Outdoor thermal comfort in urban canyon and courtyard in hot arid climate: A parametric study based on the vernacular settlement of Mardin”, Sustainable Cities and Society, vol. 48, (2019), 101398, pp. 1-15. https://doi.org/10.1016/j.scs.2018.12.026
- [50] Herath H. M. P. I. K., Halwatura R. U., Jayasinghe G. Y., “Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy”, Urban Forestry and Urban Greening, vol. 29, (2018), pp. 212-222. https://doi.org/10.1016/j.ufug.2017.11.013
- [51] Rui L., Buccolieri R., Gao Z., Gatto E., Ding W., “Study of the effect of green quantity and structure on thermal comfort and air quality in an urban-like residential district by ENVI-met modelling”, Building Simulation, vol. 12, (2019), pp. 183-194. https://doi.org/10.1007/s12273-018-0498-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a43ed3a-d2df-4fd1-a322-ba188b90e88d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.