Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is devoted to the signal- and frequency characteristics of 2-D causal systems. Two different approaches to this problem are presented. First, the 2-D complex Fourier transformation of the 2-D causal impulse response 𝒉(𝒙𝟏, 𝒙𝟐) of a 2-D system defines the 2-D complex frequency response 𝑯(𝒇𝟏, 𝒇𝟐). The modulus |𝑯(𝒇𝟏, 𝒇2)| is the 2-D magnitude response and 𝐚𝐫𝐠 𝑯(𝒇𝟏, 𝒇2) is the 2-D phase response of a system. On the other hand, applying the Pei’s formula relating the 2-D complex Fourier transform with the 2-D right-sided quaternion Fourier transform we introduce a concept of the quaternion-valued frequency response 𝑯q(𝒇𝟏, 𝒇𝟏) of a 2-D causal system. We define the 2-D magnitude system response |𝑯q(𝒇𝟏, 𝒇2)| and three 2-D phase responses. These concepts constitute an original contribution of this paper. The theoretical aspects are illustrated with examples of magnitude and phase responses of a causal 2-D analog low-pass filter.
Rocznik
Tom
Strony
537--543
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
Bibliografia
- [1] S. L. Hahn, “Hilbert Transforms in Signal Processing”, Artech House Boston|London, ISBN: 9780890068861, 1996. https://uk.artechhouse.com/Hilbert-Transforms-in-Signal-Processing-P425.aspx
- [2] S. L. Hahn, K. M. Snopek, “Complex and Hypercomplex Analytic Signals. Theory and Applications”, Artech House Boston|London, ISBN: 9781630811327, 2017. https://ieeexplore.ieee.org/document/9100928
- [3] A. V. Oppenheim, A. S. Willsky, S. H. Nawab, “Signals & Systems”, 2nd ed., Pearson Education Limited, ISBN: 9780138147570, 1998.
- [4] L. B. Jackson, “Digital Filters and Signal Processing”, 2nd ed., Kluwer Academic Publishers, U.S.A., ISBN: 9781475724585, 1986. https://doi.org/10.1007/978-1-4757-2458-5
- [5] P. Denbigh, “System Analysis & Signal Processing”, Springer New York, NY, ISBN: 9780201178609, 1995.
- [6] R. Vich, “Z Transform Theory and Applications”, Springer Dordrecht, ISBN: 9789027719171, 1987.
- [7] M. S. Roden, “Analog and Digital Communication Systems”, 5th ed., Discovery Press, ISBN: 9780964696976, 2003.
- [8] R. L. Allen., D. W. Mills., “Signal Analysis - Time, Frequency, Scale and Structure”, IEEE Press, ISBN: 9780471660378, 2004. https://doi.org/10.1002/047166037X
- [9] I. A. Glover, P. M. Grant, “Digital Communications”, Prentice Hall Europe, ISBN: 9780273718307, 2009.
- [10] A. D. Poularikas (Ed.), “The Transforms and Applications Handbook”, 3rd ed., CRC Press, ISBN: 9781315218915, 2018. https://doi.org/10.1201/9781315218915
- [11] T. Kaczorek, “Two-Dimensional Linear Systems”, Springer-Verlag, Berlin, Germany, ISBN: 9783540150862, 1985. https://doi.org/10.1007/BFb0005617
- [12] M. A. Sid-Ahmed, “Two-dimensional analog filters: a new form of realization,” IEEE Transactions on Circuits and Systems, vol. 36, no. 1, pp. 153-154, January 1989. https://doi.org/10.1109/31.16586
- [13] H. J. Kaufman, M. A. Sid-Ahmed, “2-D analog filters for real time video signal processing,” IEEE Transactions on Consumer Electronics, vol. 36, no. 2, pp. 137-141, May 1990. https://doi.org/10.1109/30.54280
- [14] S. Erfani, M. Ahmadi, N. Bayan, “Two-dimensional analog filtering and its implications on circuit theory,” presented at 2014 IEEE 5th Latin American Symposium on Circuits and Systems, Santiago, Chile, pp. 1-5, 2014. https://doi.org/10.1109/LASCAS.2014.6820262
- [15] J. Chen, B. Huang, F. Ding, “Identification of two-dimensional causal systems with missing output data via expectation-maximization algorithm,” IEEE Trans. Industrial Inform., vol.17, no. 8, pp. 5185-5196, August 2021. https://doi.org/10.1109/TII.2020.3025581
- [16] S. L. Hahn, “Multidimensional complex signals with single-orthant spectra,” Proc. IEEE, vol. 80, no. 8; pp. 1287-1300, August 1992. https://doi.org/10.1109/5.158601
- [17] D. Gabor, “Theory of communications,” J. Inst. EE, Part III, vol. 93, no. 26, pp. 429-457, November 1946. https://doi.org/10.1049/ji-3-2.1946.0074
- [18] S. L. Hahn, “The N-dimensional complex delta distribution,” IEEE Trans. Signal Process., vol. 44, no. 7; pp. 1833-1837, July 1996. https://doi.org/10.1109/78.510632
- [19] T. A. Ell, “Hypercomplex Spectral Transformations”, Ph. D. dissertation, Univ. of Minnesota, Minneapolis, 1992. https://www.proquest.com/dissertations-theses/hypercomplex-spectral-transformations/docview/304027651/se-2?accountid=27375
- [20] K. M. Snopek, “Complex and hypercomplex multidimensional analytic signals - the theory and chosen properties,” in Advances in Signal Processing: Reviews, Sergey Y. Yurish (Ed.), International Frequency Sensor Association (IFSA) Publishing, vol. 2., pp. 21-51, ISBN: 978-8409288304, 2021. https://repo.pw.edu.pl/docstore/download/@WUT314d4e5defb84e41a7d45106c75df466/Advances_in_Signal_Processing_Vol_2.pdf
- [21] S.-C. Pei, J.-J. Ding, J.-H. Chang, “Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT,” IEEE Trans. Sig. Proc., vol. 49, no. 11; pp. 2783-2797, November 2001. https://doi.org/10.1109/78.960426.
- [22] T. Bülow, G. Sommer, “Hypercomplex Signals - a novel approach of the analytic signal to the multidimensional case,” IEEE Trans. Sig. Proc., vol. 49, no. 11; pp. 2844-2852, November 2001. https://doi.org/10.1109/78.960432
- [23] T. Bülow, “Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images,” Selbstverlag des Instituts für Informatik, Kiel, 1999. https://nbn-resolving.org/urn:nbn:de:gbv:8:1-zs-00000190-a9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a43e86d-4f0d-4483-b97f-34d6057e8341
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.