PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on control of dynamic disaster induced by high-level ETHR fracture by ground fracturing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fracture of high-level extra thick and hard roof (ETHR) above the coal seam is the main reason for the frequent occurrence of mine dynamic disasters such as mine earthquake and rock burst. In order to address this problem, the ground fracturing technology was proposed in this paper to presplit the high-level roof. The FLAC numerical model was established to study the dynamic response of the ETHR before and after fracturing. The simulation results show that: The existence of hydraulic fracture can effectively reduce the first breaking span of ETHR, and slow down the stress and elastic deformation energy concentration of coal and rock mass on both sides of goaf. In order to ensure the economical and effective opening of prefabricated cracks, the comprehensive influence of tensile stress zone and induced stress between cracks should be fully considered in the design of crack spacing. Finally, the field test of hydraulic fracturing was carried out in 63up06 working face in Dongtan coal mine in China. The results of microseismic monitoring showed that there were only 4 strong mine earthquake events of magnitude 2.0 that happened in the first 400 m of excavation, compared with the adjacent working face, the number of large energy mining earthquake events decreased significantly. It showed that the ground fracturing effectively controlled the high and thick strata and verified the feasibility of the ground fracturing technology. The research results can provide some guidance for the treatment of mine earthquake and rock burst in similar working face.
Czasopismo
Rocznik
Strony
1273--1287
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
  • School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
  • School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
  • School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
autor
  • School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
  • Yanzhou Coal Mining Co., Ltd, Zoucheng 273512, Shandong, China
autor
  • Yanzhou Coal Mining Co., Ltd, Zoucheng 273512, Shandong, China
Bibliografia
  • 1. Bednarek U, Majcherczyk T (2020) An analysis of rock mass characteristics which influence the choice of support. Geomech Eng 21(4):371–377. https://doi.org/10.12989/gae.2020.21.4.371
  • 2. Chen B, Zhang SC, Li YY, Li JP (2020) Experimental study on water and sand inrush of mining cracks in loose layers with different clay contents. B Eng Geol Environ 80:663–678. https://doi.org/10.1007/s10064-020-01941-5
  • 3. Dma B, Pnsrc D, Mk A (2020) Monitoring the strata behavior in the destressed zone of a shallow indian longwall panel with hard sandstone cover using mine-microseismicity and borehole televiewer data. Eng Geol 271:105593. https://doi.org/10.1016/j.enggeo.2020.105593
  • 4. Feng ZJ, Guo WB, Xu FY, Yang DM, Yang WQ (2019) Control technology of surface movement scope with directional hydraulic fracturing technology in longwall mining: a case study. Energies 12(18):3480. https://doi.org/10.3390/en12183480
  • 5. Fu TF, Xu T, Heap MJ, Meredith PG, Mitchell TM (2020) Mesoscopic time-dependent behavior of rocks based on three-dimensional discrete element grain-based model. Comput Geotech 121:103472. https://doi.org/10.1016/j.compgeo.2020.103472
  • 6. Gao Q, Cheng YF, Han SC, Yan CL, Jiang L (2018) Numerical modeling of hydraulic fracture propagation behaviors influenced by pre-existed injection and production wells. J Petrol Sci Eng 172:976–987. https://doi.org/10.1016/j.petrol.2018.09.005
  • 7. Gao Q, Cheng YF, Han SC, Yan CL, Sun YW (2019a) Effects of nonuniform pore pressure field on hydraulic fracture propagation behaviors. Eng Fract Mech 221:106682. https://doi.org/10.1016/j.engfracmech.2019a.106682
  • 8. Gao YB, Wang YJ, Yang J, Zhang XY, He MC (2019b) Meso- and macroeffects of roof split blasting on the stability of gateroad surroundings in an innovative nonpillar mining method. Tunn Undergr Sp Tech 90:99–118. https://doi.org/10.1016/j.tust.2019b.04.025
  • 9. Guo WJ, Li YY, Yin DW, Zhang SC, Sun XZ (2016) Mechanisms of rock burst in hard and thick upper strata and rock-burst controlling technology. Arab J Geosci 9(10):561. https://doi.org/10.1007/s12517-016-2596-2
  • 10. Han SC, Gao Q, Cheng YF, Yan CL, Shi X (2020) Experimental study on brittle response of shale to cryogenic uid nitrogen treatment. J Petrol Sci Eng. https://doi.org/10.1016/j.petrol.2020.107463
  • 11. He J, Dou LM, Mu ZL, Cao AY, Gong SY (2016) Numerical simulation study on hard-thick roof inducing rock burst in coal mine. J Cent South Univ 09:2314–2320
  • 12. Hebblewhite B, Galvin J (2017) A review of the geomechanics aspects of a double fatality coal burst at Austar Colliery in NSW, Australia in April 2014. Int J Min Sci Technol 27:3–7. https://doi.org/10.1016/j.ijmst.2016.10.002
  • 13. Huang BX, Liu JW, Zhang Q (2018) The reasonable breaking location of overhanging hard roof for directional hydraulic fracturing to control strong strata behaviors of gob-side entry. Int J Rock Mech Min 103:1–11. https://doi.org/10.1016/j.ijrmms.2018.01.013
  • 14. Iannacchione AT, Tadolini SC (2016) Occurrence, predication, and control of coal burst events in the US. Int J Min Sci Techno 26(1):39–46. https://doi.org/10.1016/j.ijmst.2015.11.008
  • 15. Itasca Consulting Group. (2013). FLAC 3D (Fast LagrangianAnalysis of Continua in 3-dimensions) 5.0 manual.
  • 16. Jendrys M (2021) Directional hydraulic fracturing (DHF) of the roof, as an element of rock burst prevention in the light of underground observations and numerical modelling. Energies 14:562. https://doi.org/10.3390/en14030562
  • 17. Jiang LS, Sainoki A, Mitri HS, Ma NJ, Liu HT, Hao Z (2016) Influence of fracture-induced weakening on coal mine gateroad stability. Int J Rock Mech Min. https://doi.org/10.1016/j.ijrmms.2016.04.017
  • 18. Jiang LS, Kong P, Shu JM, Fan KG (2019a) Numerical analysis of support designs based on a case study of a longwall entry. Rock Mech Rock Eng 52(9):3373–3384. https://doi.org/10.1007/s00603-018-1728-2
  • 19. Jiang LS, Wu QS, Wu QL, Wang P, Xue YC, Kong P (2019b) Fracture failure analysis of hard and thick key layer and its dynamic response characteristics. Eng Fail Anal 98:118–130. https://doi.org/10.1016/j.engfailanal.2019.01.008
  • 20. Konicek P, Soucek K, Stas L, Singh R (2013) Long-hole destress blasting for rockburst control during deep underground coal mining. Int J Rock Mech Min Sci 61:141–153. https://doi.org/10.1016/j.ijrmms.2013.02.001
  • 21. Li N, Wang EY, Ge MC, Liu J (2015) The fracture mechanism and acoustic emission analysis of hard roof: a physical modeling study. Arab J Geosci 8:1895–1902. https://doi.org/10.1007/s12517-014-1378-y
  • 22. Li YH, Bai JB, Liu LB, Wang XY, Yu Y, Li T (2022) Micro and macro experimental study of using the new cement-based self-stress grouting material to solve shrinkage problem. J Mater Res Technol 17:3118–3137. https://doi.org/10.1016/j.jmrt.2022.01.148
  • 23. Ma Q, Tan YL, Liu XS, Zhao ZH, Fan DY (2021) Mechanical and energy characteristics of coal–rock composite sample with different height ratios: a numerical study based on particle flow code. Environ Earth Sci 80:309. https://doi.org/10.1007/s12665-021-09453-5
  • 24. Mazaira P, Konicek P (2015) Intense rockburst impacts in deep underground construction and their prevention. Can Geotech J 52:1426–1439. https://doi.org/10.1139/cgj-2014-0359
  • 25. Ning JG, Wang J, Jiang LS, Jiang N, Liu XS, Jiang JQ (2017) Fracture analysis of double-layer hard and thick roof and the controlling effect on strata behavior: a case study. Eng Fail Anal 81:117–134. https://doi.org/10.1016/j.engfailanal.2017.07.029
  • 26. Qian MG, Miao XX, Xu JL, Mao XB (2003) Key Stratum Theory Of Strata Control. China University of mining and Technology Press Xu Zhou Jiang Su, China
  • 27. Sun YX, Fu YK, Wang T (2021) Field application of directional hydraulic fracturing technology for controlling thick hard roof: a case study. Arab J Geosci 14(6):1–15. https://doi.org/10.1007/s12517-021-06790-4
  • 28. Tadisetty S, Matsui K, Shimada H, Gupta RN (2006) Real time analysis and forecasting of strata caving behaviour during longwall operations. Rock Mech Rock Eng 39:383–393. https://doi.org/10.1007/s00603-005-0077-0
  • 29. Tan YL, Liu XS, Shen B, Ning JG, Gu QH (2018) New approaches to testing and evaluating the impact capability of coal seam with hard roof and/or floor in coal mines. Geomech Eng 14(4):367–376
  • 30. Tan YL, Ma Q, Zhao ZH, Gu QH, Fan DY, Song SL (2019) Cooperative bearing behaviors of roadside support and surrounding rocks along gob-side. Geomech Eng 18(4):439–448. https://doi.org/10.12989/gae.2019.18.4.439
  • 31. Wang L, Cheng YP, Xu C, An FH, Jin K, Zhang XL (2013) The controlling effect of thick-hard igneous rock on pressure relief gas drainage and dynamic disasters in outburst coal seams. Nat Hazards 66:1221–1241. https://doi.org/10.1007/s11069-012-0547-0
  • 32. Wang W, Cheng YP, Wang HF, Liu HY, Wang L (2015) Fracture failure analysis of hard-thick sandstone roof and its controlling effect on gas emission in underground ultra-thick coal extraction. Eng Fail Anal 54:150–162. https://doi.org/10.1016/j.engfailanal.2015.04.016
  • 33. Wang P, Jiang JQ, Zhang PP, Wu QL (2016) Breaking process and mining stress evolution characteristics of a high-position hard and thick stratum-sciencedirect. Int J Min Sci Techno 26(4):563–569. https://doi.org/10.1016/j.ijmst.2016.05.005
  • 34. Wang CX, Jiang N, Shen BT, Sun XZ, Zhang BC, Lu Y, Li YY (2019a) Distribution and evolution of residual voids in longwall old goaf. Geomech Eng 19(2):105–114. https://doi.org/10.12989/.2019.19.2.105
  • 35. Wang P, Jiang LS, Zheng PQ, Qin GP, Zhang C (2019b) Inducing mode analysis of rock burst in fault-affected zone with a hard-thick stratum occurrence. Environ Earth Sci 78(15):467.1-467.13. https://doi.org/10.1007/s12665-019-8448-0
  • 36. Wang CX, Shen BT, Chen JT, Tong WX, Jiang Z, Liu Y, Li YY (2020) Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation. Geomech Eng 20(6):485–495. https://doi.org/10.12989/gae.2020.20.6.485
  • 37. Xu C, Fu Q, Cui XY, Wang K, Zhao YX, Cai YB (2019) Apparentdepth effects of the dynamic failure of thick hard rock strata on the underlying coal mass during underground mining. Rock Mech Rock Eng 52:1565–1576. https://doi.org/10.1007/s00603-018-1662-3
  • 38. Xue YC, Sun WB, Wu QS (2020a) The influence of magmatic rock thickness on fracture and instability law of mining surrounding rock. Geomech Eng 20(6):547–556. https://doi.org/10.12989/gae.2020.20.6.000
  • 39. Xue YC, Xu T, Wasantha P, Yang TH, Fu TF (2020b) Dynamic disaster control of backfill mining under thick magmatic rock in one side goaf: a case study. J Cent South Univ 27(9):3103–3117. https://doi.org/10.1007/s11771-020-4532-6
  • 40. Xue YC, Xu T, Zhu WC, Zhen H, Wang XW (2021) Full-field quantification of time-dependent and -indep-endent deformation and fracturing of double-notch flawedrock using digital image correlation. Geomech Geophys Geo 7:100. https://doi.org/10.1007/s40948-021-00302-0
  • 41. Yang JX, Liu CY, Yu B (2017) Application of confined blasting in water-filled deep holes to control strong rock pressure in hard rock mines. Energies 10(11):1874. https://doi.org/10.3390/en10111874
  • 42. Yardimci AG, Karakus M (2020) A new protective destressing technique in underground hard coal mining. Int J Rock Mech Min. https://doi.org/10.1016/j.ijrmms.2020.104327
  • 43. Yu B, Zhao J, Kuang TJ, Meng XB (2015) In situ investigations into overburden failures of a super-thick coal seam for longwall top coal caving. Int J Rock Mech Min 78:155–162. https://doi.org/10.1016/j.ijrmms.2015.05.009
  • 44. Yu B, Zhao J, Xiao HT (2017) Case study on overburden fracturing during longwall top coal caving using microseismic monitoring. Rock Mech Rock Eng 50(2):507–511. https://doi.org/10.1007/s00603-016-1096-8
  • 45. Yu B, Gao R, Kuang TJ, Huo BJ, Meng XB (2019) Engineering study on fracturing high-level hard rock strata by ground hydraulic action. Tunn Undergr Sp Tech 86:156–164. https://doi.org/10.1016/j.tust.2019.01.019
  • 46. Zhang SC, Li YY, Shen BT, Sun XZ, Gao LQ (2019a) Effective evaluation of pressure relief drilling for reducing rock bursts and its application in underground coal mine. Int J Rock Mech Min 114:7–16. https://doi.org/10.1016/j.ijrmms.2018.12.010
  • 47. Zhang WL, Qu XC, Li C, Xu X, Wang YL (2019b) Fracture analysis of multi-hard roofs based on microseismic monitoring and control techniques for induced rock burst: a case study. Arab J Geosci 12(24):784. https://doi.org/10.1007/s12517-019-4972-1
  • 48. Zhang QM, Wang EY, Feng XJ, Niu Y, Wang H (2020) Rockburst risk analysis during high-hard roof breaking in deep mines. Nat Resour Res 29:4085–4101. https://doi.org/10.1007/s11053-020-09664-w
  • 49. Zhang SC, Li YY, Liu H, Ma XW (2021) Experimental investigation of crack propagation behavior and fai-lure characteristics of cement infilled rock. Constr Build Mater 268(3):121735. https://doi.org/10.1016/j.conbuildmat.2020.121735
  • 50. Zhao JH, Chen JT, Zhang XG, Jiang N, Zhang YZ (2020) Distribution characteristics of floor pore water pressure based on similarity simulation experiments. B Eng Geol Environ 79(9):4805–4816. https://doi.org/10.1007/s10064-020-01835-6
  • 51. Zuo JP, Li ZD, Zhao SK, Jiang YQ, Liu HY, Yao MH (2019) A study of fractal deep-hole blasting and its induced stress behavior of hard roof strata in bayangaole coal mine, China. Adv Civ Eng. https://doi.org/10.1155/2019/9504101
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a421361-c3da-4fa1-98d7-f126cecb823b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.