PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite-time stability and stabilization of singular state-delay systems using improved estimation of a lower bound on a Lyapunov-like functional

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the problems of finite-time stability and stabilization for a class of singular time-delay systems are studied. Using the Lyapunov-like functional (LLF) with (exponential or power) weighting function and a new estimation method for the lower bound on LLF, some sufficient stability conditions are introduced. It is shown that the weighting function significantly reduces the conservatism of the stability criteria in comparison to estimation of the lower bound on LLF without this function. To solve the finite-time stabilization problem, a stabilizing linear state controller is designed by exploiting the cone complementarity linearization algorithm. Two numerical examples are given to illustrate the effectiveness of the proposed method.
Rocznik
Strony
479--487
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
  • Faculty of Technology, University of Nis,124 Bulevar Oslobodjenja St., 16000 Leskovac, Serbia
  • Faculty of Mechanical Engineering, University of Belgrade, 16 Kraljice Marije St., 11120 Belgrade, Serbia
autor
  • Faculty of Electronic Engineering, University of Nis, 14 Aleksandra Medvedeva St., 18000 Nis, Serbia
Bibliografia
  • [1] L. Dai, Singular Control Systems: Lecture Notes in Control and Information Sciences (118), Springer, New York, 1989.
  • [2] D.G. Luenberger, “Singular dynamics Leontief systems”, Econometrics 45, 991-995 (1977).
  • [3] A. Kumar and P. Daoutidis, “Control of nonlinear differential algebraic equation systems: an overview”, Proc. NATO Advanced Study Institute on Nonlinear Model Based Process Control 1, 311-344 (1997).
  • [4] T. Kaczorek, “Positive minimal realizations for singular discrete-time systems with delays in state and delays in control”, Bull. Pol. Ac.: Tech. 53 (3), 293-298 (2005).
  • [5] S. Xu, J. Lam, and Y. Zou, “Improved conditions for delaydependent robust stability and stabilization of uncertain discrete time-delay systems”, Asian J. Control 7 (3), 344-348 (2005).
  • [6] P. Park and J.W. Ko, “Stability and robust stability for systems with a time-varying delay”, Automatica 43 (10), 1855-1858 (2007).
  • [7] B. Ficak and J. Klamka, “Stability criteria for a class of stochastic distributed delay systems”, Bull. Pol. Ac.: Tech. 61 (1), 221-228 (2013).
  • [8] S.Xu, P.V. Dooren, R. Stefan, and J. Lam, “Robust stability and stabilization for singular systems with state delay and parameter uncertainty”, IEEE Trans. Autom. Control 47 (7), 1122-1128 (2002).
  • [9] S. Xu, J. Lam, and Y. Zou, “An improved characterization of bounded realness for singular delay systems and its applications”, Int. J. Robust Non-lin. Control 18 (3), 263-277 (2008).
  • [10] J. Li, H. Su, Z. Wu, and J. Chu, “Robust stabilization for discrete-time nonlinear singular systems with mixed time delays”, Asian J. Control 14 (5), 1411-1421 (2012).
  • [11] Z. Du, Q. Zhang, and L. Liu, “New delay-dependent robust stability of discrete singular systems with time-varying delay”, Asian J. Control 13 (1), 136-147 (2011).
  • [12] X. Zhang and H. Zhu, “Robust stability and stabilization criteria for discrete singular time-delay LPV systems”, Asian J. Control 14 (4), 1084-1094 (2012).
  • [13] J. Wang, “New delay-dependent stability criteria for descriptor systems with interval time delay”, Asian J. Control 14 (1), 197-206 (2012).
  • [14] F. Amato, M. Ariola, and P. Dorate, “Finite-time control of linear systems subject to parameteric uncertainties and disturbances”, Automatica 37 (9), 1459-1463 (2001).
  • [15] F. Amato, M. Ariola, and P. Dorate, “Finite-time stabilization via dynamic output feedback”, Automatica 42 (2), 337-342 (2006).
  • [16] S.B. Stojanovic, D.Lj. Debeljkovic, and D.S Antic, “Robust finite-time stability and stabilization of linear uncertain timedelay systems”, Asian J. Control 15 (5), 1548-1554 (2013).
  • [17] C. Yangy, Q. Zhang, Y. Linz, and L. Zhouy, “Practical stability of closed-loop descriptor systems”, Int. J. Syst. Sci. 37 (14), 1059-1067 (2006).
  • [18] C.Y. Yang, X. Jing, Q. Zhang, and L.N. Zhou, “Practical stability analysis and synthesis of linear descriptor systems with disturbances”, Int. J. Autom. Comput. 5 (2), 138-144 (2008).
  • [19] J.E. Feng, Z. Wu, and J.B. Sun, “Finite-time control of linear singular systems with parametric uncertainties and disturbances”, Acta Autom. Sin. 31 (5), 643-637 (2006).
  • [20] W. Xue and W. Mao, “Admissible finite-time stability and stabilization of uncertain discrete singular systems”, J. Dyn. Sys., Meas. Control 135 (3), 031018-031024 (2013).
  • [21] D.Lj. Debeljkovic, S.B. Stojanovic, and T. Nestorovic, “The stability of linear continuous singular and discrete descriptor time delayed systems over the finite time interval: an overview - part I continuous case”, Sci. Tech. Rev. 62 (1), 38-47 (2012).
  • [22] C. Yang, Q. Zhang, and L. Zhou, “Practical stability of descriptor systems with time delays in terms of two measurements”, J. Franklin Inst. 343 (6), 635-646 (2006).
  • [23] D.Lj. Debeljkovic, S.B. Stojanovic, and M. Aleksendric, “Stability of singular time-delay systems in the sense of non- Lyapunov: classical and modern approach”, Hem. Ind. 67 (2), 193-202 (2013).
  • [24] M. Su, S. Wang, and X. Zhang, “Finite-time stabilization for singular linear time-delay systems with time-varying exogenous disturbance”, Adv. Mater. Res. 506, 490-495 (2012), 2459-2463 (2012).
  • [25] S.B. Stojanovic, D.LJ. Debeljkovic, and N. Dimitrijevic, “Finite-time stability of discrete-time systems with timevarying delay”, Chem. Ind. Chem. Eng. Q. 18 (4), 525-533 (2012).
  • [26] W. Xue and W. Mao, “Admissible finite-time stability and stabilization of discrete-time singular systems with time-varying delays”, Proc. American Control Conf. 2013, 6087-6092 (2013).
  • [27] S.P. Bhat and D.S. Bernstein, “Finite-time stability of continuous autonomous systems”, Siam J. Control Optim. 38, 751-766 (2000).]
  • [28] E. Moulay and W. Perruquetti, “Finite time stability and stabilization of a class of continuous systems”, J. Math. Anal. Appl. 323 (2), 1430-1443 (2006).
  • [29] M. Athans and P.L. Falb, Optimal Control, McGraw-Hill, New York 1966.
  • [30] L. El Ghaoui, F. Oustry, and M. Ait Rami, “A cone complementarity linearization algorithm for static output-feedback and related problems”, IEEE Trans. Autom. Control 42 (8), 1171-1176 (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a40486d-bae8-4a23-b24f-9e68a6837025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.