PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The management of bridge structures - challenges and possibilities

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zarządzanie obiektami mostowymi - wyzwania i możliwości
Języki publikacji
EN
Abstrakty
EN
Bridges are particularly vulnerable elements of transport infrastructures. In many cases, bridge structures may be subject to higher volumes of traffic and higher loads as well as more severe environmental conditions than it was designed. Sound procedures to ensure monitoring, quality control, and preventive maintenance systems are therefore vital. The paper presents main challenges and arriving possibilities in management of bridge structures, including: relationships between environment and bridge infrastructure, improvement of diagnostic technologies, advanced modelling of bridges in computer-based management systems, development of knowledge-based expert systems with application of artificial intelligence, applications of technology of Bridge Information Modelling (BrIM) with augmented and virtual reality techniques. Presented activities are focused on monitoring the safety of bridges for lowering the risk of an unexpected collapse significantly as well as on efficient maintenance of bridges as components of transport infrastructure - by means of integrated management systems. The proposed classification of Bridge Management Systems shows the history of creating such systems and indicates the expected directions of their development, taking into account changing challenges and integrating new developing technologies, including automation of decision-making processes.
PL
Obiekty mostowe są szczególnie wrażliwymi elementami infrastruktury transportowej. W wielu przypadkach mogą podlegać większemu natężeniu ruchu i większym obciążeniom, a także bardziej surowym warunkom środowiskowym niż te, na które je pierwotnie projektowano. Dlatego niezbędne jest przygotowywanie i wdrażanie do stosowania procedur, które zapewnią możliwie pełną kontrolę jakości obiektów mostowych na każdym etapie cyklu ich życia. Stosowane rozwiązania powinny też zapewniać systematyczne monitorowanie stanu technicznego infrastruktury mostowej oraz dobór skutecznych działań utrzymaniowych. W artykule przedstawiono główne wyzwania i pojawiające się możliwości w zarządzaniu obiektami mostowymi z wykorzystaniem nowoczesnych technologii. Obejmują one przede wszystkim: relacje pomiędzy środowiskiem a infrastrukturą mostową, doskonalenie technologii diagnostycznych, zaawansowane modelowanie mostów w komputerowych systemach zarzadzania, rozwój systemów ekspertowych wspomagających procesy decyzyjne, które oparte są na bazie wiedzy z zastosowaniem elementów sztucznej inteligencji, a także wdrażanie metodyki BrIM (Bridge Information Management) z technikami rozszerzonej i wirtualnej rzeczywistości. Prezentowane działania skupiają się na monitorowaniu bezpieczeństwa obiektów mostowych oraz ich użytkowników w celu obniżenia ryzyka niespodziewanej katastrofy oraz zapewnienia możliwości realizowania sprawnego procesu utrzymania obiektów mostowych będących bardzo ważnymi elementami całej infrastruktury transportowej. Przedstawiona klasyfikacja systemów zarzadzania mostami (Bridge Management Systems) pokazuje historie tworzenia takich systemów oraz wskazuje spodziewane kierunki ich rozwoju związane z uwzględnianiem zmieniających się wyzwań i integracją nowych rozwijających się technologii, w tym automatyzacja procesów podejmowania decyzji.
Twórcy
autor
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wrocław, Poland
  • Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
Bibliografia
  • [1] B. Pang, P. Yang, Y. Wang, A. Kendall, H. Xie, Y. Zhang, “Life cycle environmental impact assessment of a bridge with different strengthening schemes”, The International Journal of Life Cycle Assessment, 2015, vol. 20, no. 9, pp. 1300-1311.
  • [2] F. Biondini, D.M. Frangopol, Eds., Bridge Maintenance, Safety, Management, Resilience and Sustainability. CRC Press, 2012.
  • [3] S. Yehia, O. Abudayyeh, S. Nabulsi, I. Abdelqader, “Detection of common defects in concrete bridge decks using non-destructive evaluation techniques”, Journal of Bridge Engineering, 2007, vol. 12, no. 2, pp. 215-225.
  • [4] J. Bień, Defects and diagnostics of bridge structures (in Polish). Warsaw: Transport and Communication Publishers, 2010.
  • [5] J. Hoła, J. Bień, L. Sadowski, K. Schabowicz, “Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability”, Bulletin of the Polish Academy of Sciences, Technical Sciences, 2015, vol. 63, no. 1, pp. 87-96, DOI: 10.1515/bpasts-2015-0010.
  • [6] J. Bień, T. Kamiński, M. Kużawa, “Taxonomy of non-destructive field tests of bridge materials and structures”, Archives of Civil and Mechanical Engineering, 2019, vol. 19, no. 4, pp. 1353-1367, DOI: 10.1016/j.acme.2019.08.002.
  • [7] X. Wang, W. Dou, S. Chen, W. Ribarsky, R. Chang, “An Interactive Visual Analytics System for Bridge Management”, Computer Graphics Forum, 2010, vol. 29, no. 3, pp. 1033-1042, DOI: 10.1111/j.1467-8659.2009.01708.x.
  • [8] P.D. Thompson, E.P. Small, M. Johnson, A.R. Marshall, “The PONTIS Bridge Management System”, Structural Engineering International, 1998, vol. 8, no. 4, pp. 303-308.
  • [9] M.K. Soderqvist, M. Veijola, “The Finnish Bridge Management System”, Structural Engineering International, 1998, vol. 8, no. 4, pp. 315-319.
  • [10] P.D. Thompson, A. Chetham, T. Merlo, R. Ellis, B. Kerr, “The New Ontario Bridge Management System”, Transportation Research Circular, 2000, no. 498, pp. F-6/1-15.
  • [11] J. Bień, “Modelling of structure geometry in Bridge Management Systems”, Archives of Civil and Mechanical Engineering, 2011, vol. 11, no. 3, pp. 519-532.
  • [12] T. Kamiński, J. Bień, B. Bień, “An expert tool for assessment of damaged masonry arch bridges”, Proc. 7th International Conference on Arch Bridges, Trogir - Split, Croatia, 2013, pp. 691-698.
  • [13] J. Bień, M. Kużawa, “NDT-based bridge condition assessment supported by expert tools”, Proc. International Conference of Numerical Analysis and Applied Mathematics 2015, American Institute of Physics, Rhodes, 2015, AIP Publishing, 2016, pp. 1-4.
  • [14] M. Vagnoli, R. Remenyte-Prescott, J. Andrews, “Railway bridge structural health monitoring and fault detection: State-of-the-art methods and future challenges”, Structural Health Monitoring, 2017, vol. 17, no. 4, pp. 971-1007, DOI: 10.1177/1475921717721137.
  • [15] Ch.-S. Shim, H. Kang, N.S. Dang, D. Lee, “Development of BIM-based bridge maintenance system for cable-stayed bridges”, Smart Structures & Systems, 2017, vol. 20, no. 6, pp. 697-708.
  • [16] R.T. Azuma, “A Survey of Augmented Reality”, Tele-operators Virtual Environ, 1997, vol. 6, no. 4, pp. 355-385.
  • [17] J. Bień, M. Kużawa, B. Bień, “To See is to Know: Visualization in Bridge Inspection and Management”, Proc. 5th International Conference on Bridge Maintenance, Safety and Management, Philadelphia, 2010, pp. 567-574.
  • [18] M. Salamak, M. Januszka, “BrIM bridge inspections in the context of Industry 4.0 trends”, Proc. of IABMAS 2018, Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges, 2018, pp. 2260-2267.
  • [19] X. Wang, P.E.D. Love, M. Jeong Kim, C. Park, C. Sing, L. Hou, “A conceptual framework for integrating building information modelling with augmented reality”, Automation in Construction, 2013, vol. 34, pp. 37-44.
  • [20] W. Chunfeng, Z. ZhenweI, L. Siyuan, D. Youliang, X. Zhao, Y. Zegang, X. Yefei, Y. Fangzhou, “Development of a Bridge Management System Based on the Building Information Modelling Technology”, Sustainability, 2019, vol. 11, no. 17, DOI: 10.3390/su11174583.
  • [21] J. Olofsson, et al., “Assessment of European Railway Bridges for Future Traffic Demands and Longer Lives - EC Project “Sustainable Bridges”, Journal of Structure and Infrastructure Engineering, 2005, vol. 1, no. 2, pp. 93-100.
  • [22] J. Matos, “An overview of the European situation on quality control of existing bridges - COST Action TU1406”, Proc. of the 40th IABSE Symposium, Nantes, France, 2018.
  • [23] J. Bień, J. Krzyżanowski, P. Rawa, J. Zwolski, “Dynamic Load Tests in Bridge Management”, Archives of Civil and Mechanical Engineering, 2004, vol. 4, no. 2, pp. 63-78.
  • [24] A. Cunha, E. Caetano, F. Magalhaes, “Output-Only Dynamic Testing of Bridges and Special Structure”, Structural Concrete, 2007, vol. 8, no. 2, pp. 67-85.
  • [25] H. Wenzel, Health Monitoring of Bridges. J. Wiley & Sons Ltd., 2009.
  • [26] J. Zwolski, J. Bień, “Modal analysis of bridge structures by means of Forced Vibration Tests”, Journal of Civil Engineering and Management, 2011, vol. 17, no. 4, pp. 590-599.
  • [27] R. Helmerich, E. Niederleithinger, Ch. Trela, J. Bień, G. Bernardini, “Multi-tool inspection and numerical analysis of an old masonry arch bridge”, Structure and Infrastructure Engineering, 2012, vol. 8, no. 1, pp. 27-39, DOI: 10.1080/15732471003645666.
  • [28] C. Middleton, P.R.A. Fidler, P.J. Vardanega, Eds., Bridge Monitoring: A Practical Guide. ICE Publishing, 2016.
  • [29] N. Bagge, C. Popescu, L. Elfgren, “Failure tests on concrete bridges: Have we learnt the lesson?”, Structure and Infrastructure Engineering, 2018, vol. 14, no. 3, pp. 292-319.
  • [30] E.L.O. Lantsoght, Ed., “Load Testing of Bridges: Current Practice and Diagnostic Load Testing”, vol. 12; “Load Testing of Bridges; Proof Load Testing and the Future of Load Testing”, vol. 13. Series: Structures and Infrastructure, Dan M. Frangopol, Ed. London/Leiden: Taylor and Francis Group, CRC Press, 2019, pp. 299-376. ISBN 978-0-367-21082-3; 978-0-367-21083-0.
  • [31] M. Maksymowicz, P. Cruz, J. Bień, “Load capacity of damaged RC slab spans of railway bridges”, Archives of Civil and Mechanical Engineering, 2011, vol. 11, no. 4, pp. 963-978, DOI: 10.1016/S1644-9665(12)60089-2.
  • [32] J. Zwolski, J. Bień, T. Kamiński, M. Kużawa, P. Rawa, “Experimental vibration analysis of concrete box bridge girders”, Proc. 5th International Conference on Experimental Vibration Analysis for Civil Engineering Structures EVACES 2013, Ouro Preto, Brazil, 2013, pp. 193-200.
  • [33] J. Bień, T. Kamiński, M. Kużawa, “Validation of numerical models of concrete box bridges based on load test results”, Archives of Civil and Mechanical Engineering, 2015, vol. 15, no. 4, pp. 1046-1060, DOI: 10.1016/j.acme.2015.05.007.
  • [34] M. Kużawa, T. Kamiński, J. Bień, “Fatigue assessment procedure for old riveted road bridges”. Archives of Civil and Mechanical Engineering, 2018, vol. 18, no. 4, pp. 1259-1274, DOI: 10.1016/j.acme.2018.03.005.
  • [35] T. Kamiński, M. Kużawa, J. Bień, “Experimental and numerical assessment of an old backfilled concrete arch bridge”, Proc. 9th International Conference on Arch Bridges, Structural Integrity, Springer, 2020, vol. 11, pp. 194-202.
  • [36] J. Bień, M. Kużawa, M. Gładysz-Bień, T. Kamiński, “Quality control of road bridges in Poland”, Proc. 8th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2016, Foz do Iguaçu, Brasil, 2016, pp. 971-978.
  • [37] L.A. Zadeh, “Fuzzy sets and information granularity”, Advances in Fuzzy Set Theory and Applications, M. Gupta, R. Ragade, R. Yage, Eds. Amsterdam: North-Holland Publ., 1979, pp. 3-18.
  • [38] S. Sasmal, K. Ramanjaneyulu, “Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach”, Expert Systems with Applications, 2008, vol. 35, no. 3, pp. 1430-1443, DOI: 10.1016/j.eswa.2007.08.017.
  • [39] Z. Li, R. Burgueño, “Using soft computing to analyze inspection results for bridge evaluation and management”, Journal of Bridge Engineering, 2010, vol. 15, no.4, pp. 430-439, DOI: 10.1061/(ASCE)BE.1943-5592.0000072.
  • [40] M. Kużawa, J. Bień, M. Gładysz-Bień, “Hybrid knowledge expert tool for load capacity assessment of railway plate girders with defects”, Proc. 11th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2013), American Institute of Physics, Rhodes, 2013, pp. 1294-1297.
  • [41] B. Daniotti, et al., Eds., Digital Transformation of the Design, Construction and Management Processes of the Built Environment. Springer International Publishing: 2020, DOI: 10.1007/978-3-030-33570-0.
  • [42] S. Baumgartner, O. El-Mahrouk, M. Kop, M. Vill, “The development of a BIM data structure for bridge maintenance”, IABSE Congress Ghent 2021 - Structural Engineering for Future Societal Needs, IABSE Zürich, 2021, pp. 949-954.
  • [43] V. Saback de Freitas Bello, C. Popescu, Th. Blanksvärd, B. Täljsten, “Bridge management systems: Overview and framework for smart management”, IABSE Congress Ghent 2021 - Structural Engineering for Future Societal Needs, IABSE Zürich, 2021, pp. 1014-1022.
  • [44] A. Abdullah, O.B. Thai, “Personal digital assistants as a mobile inspection system at construction site”, Proc. of the 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC 2006), 5-6 September 2006, Kuala Lumpur, Malaysia, 2006, pp. D28-D38.
  • [45] J. Bień, P. Rawa, “Hybrid Knowledge Representation in BMS”, Archives of Civil and Mechanical Engineering, 2004, vol. 4, no. 1, pp. 41-55.
  • [46] W. Carlson, “A Critical History of Computer Graphics and Animation”, Ohio State University, 2013.
  • [47] M. Golparvar-Fard, “D4AR. 4-Dimensional Augmented Reality”, LiDAR Magazine, 2012, vol. 2, pp. 11-15.
  • [48] M. Gołaszewska, M. Salamak, “Challenges in takeoffs and cost estimating in the BIM technology, based on the example of a road bridge model”, Technical Transactions Civil Engineering, 2017, vol. 4, pp. 71-79, DOI: 10.4467/2353737XCT.17.048.6359.
  • [49] Y. Hu, A. Hammad, “Location-based Mobile Bridge Inspection Support System”, Proc. of the 1st CSCE Specialty Conference on Infrastructure Technologies, Ontario, 2005, pp. FR130.1-FR130.10.
  • [50] M. Januszka, W. Moczulski, “Acquisition and Knowledge Representation in the Product Development Process with the Use of Augmented Reality”, Proc. of the Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment, J. Stjepandic, et al., Eds. London: Springer-Verlag, 2013, pp. 315-326.
  • [51] M. Jasiński, T. Płaszczyk, M. Salamak, “Visual programming and BIM technology in parametric concrete bridge design”, Proc. 12th Central European Congress on Concrete Engineering CCC2017, Tokaj, Hungary, 2017, pp. 130-138.
  • [52] P. Milgram, H. Takemura, A. Utsumi, F. Kishino, “Augmented Reality: A class of displays on the reality-virtuality continuum”, Proc. of SPIE - The International Society for Optical Engineering, 1994, vol. 2351.
  • [53] M. Salamak, M. Januszka, “BIM models and augmented reality for concrete bridge inspections”, Proc. 11th Central European Congress on Concrete Engineering CCC 2015, Hainburg, 2015, pp. 25-28.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a39cdd5-dceb-4de2-8b9b-cdd4fbbd0e58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.