PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Influence of Sample Averaging on Accuracy of Point Coordinates Measurement Performed Using Laser Tracking Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laser Tracking systems are commonly used in all branches of industry, which requires accurate large-scale measurements for instance aviation, space and shipbuilding industries. Laser Trackers belong to the group of non-Cartesian Coordinate Measuring Systems. Determination of the measured point coordinates involves the measurements of distance using laser beam and two angles recorded by horizontal and vertical encoders. Additionally, the environmental conditions are monitored and used for compensation of measured distance. The coordinates of single measured point are estimated using the results obtained from a series of samples taken in a short time period. The average value obtained from a sample is given as a result; additionally, the dispersion parameters are calculated which can be used to evaluate the probing process. This paper presents the research procedure which allows assessing the influence of chosen dispersion parameter related to the sample averaging on accuracy of the measurements performed with laser tracking devices. The procedure involves standard elements measurements during which the points with similar level of RMS parameter are used for the calculation of the measurement result. Such approach allows simulating the increasing dispersion of points taken into account during sample probing. The results presented in the article can be helpful to the operators of laser tracking systems to assess the influence of the probing process on the measurement accuracy.
Twórcy
autor
  • Cracow University of Technology, Laboratory of Coordinate Metrology, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
  • Cracow University of Technology, Laboratory of Coordinate Metrology, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
  • Cracow University of Technology, Laboratory of Coordinate Metrology, al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Cracow University of Technology, Laboratory of Coordinate Metrology, al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Cracow University of Technology, Laboratory of Coordinate Metrology, al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Cracow University of Technology, Laboratory of Coordinate Metrology, al. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
  • 1. Arendarski J. Niepewność pomiarów, Oficyna Wydawnicza Politechniki Warszawskiej, 2006.
  • 2. Gąska A., Gaska P. and Gruza M. Simulation model for correction and modeling of probe head errors in five-axis coordinate systems, Applied Sciences, 6(5).
  • 3. Gąska A., Gruza M., Gąska P., Karpiuk M. and Sładek J. Identification and correction of coordinate measuring machine geometrical errors using lasertracer systems, Advances in Science and Technology Research Journal, 7(20), 17–22.
  • 4. Gąska A., Sładek J., Ostrowska K., Kupiec R., Krawczyk M., Harmatys W., Gąska P., Gruza M., Owczarek D., Knapik R. and Kmita A. Analysis of changes in coordinate measuring machines accuracy made by different nodes density in geometrical errors correction matrix, Measurement: Journal of the International Measurement Confederation, 68, 155–163.
  • 5. Gąska P., Gąska A., Sładek J. and Jędrzejewski J. Simulation model for uncertainty estimation of measurements performed on five-axis measuring systems, The International Journal of Advanced Manufacturing Technology, 104(9–12), 4685–4696.
  • 6. Gromczak K., Gaska A., Ostrowska K., Sładek J., Harmatys W., Gaska P., Gruza M. and Kowalski M. Validation model for coordinate measuring methods based on the concept of statistical consistency control, Precision Engineering, 45, 414–422.
  • 7. Hocken R. J. and Pereira P. H. Coordinate Measuring Machines and Systems, Second Edition. CRC Press, 2012.
  • 8. Huo D., Maropoulos P. G. and Cheng C. H. The framework of the virtual laser tracker – a systematic approach to the assessment of error sources and uncertainty in laser tracker measurement, Proc. of 6th CIRP-Sponsored International Conference on Digital Enterprise Technology, Hong-Kong, People’s Republic of China 2010, 507–523.
  • 9. Józwik J. and Czwarnowski M. Angular positioning accuracy of rotary table and repeatability of five-axis machining centre dmu 65 monoblock, Advances in Science and Technology Research Journal, 9(28), 89–95.
  • 10. Ramu P., Yagüe A., Hocken R.J. and Miller J. Development of a parametric model and virtual machine to estimate task specific measurement uncertainty for a five-axis multi-sensor coordinate measuring machine, Precision Engineering, 35(3), 431–439.
  • 11. Ratajczyk E. and Woźniak A. Współrzędnościowe systemy pomiarowe. Oficyna Wydawnicza Politechniki Warszawskiej, 2016.
  • 12. Schmitt R. et al. Advances in Large-Scale Metrology – Review and future trends, CIRP Annals, 65(2), 643–665.
  • 13. Sładek, J. Coordinate Metrology: Accuracy of Systems and Measurements. Springer, 2016.
  • 14. Stejskal T., Kráľ J., RudyV., Melko J., Rjabušin A. and Pavliková L. Impact of the technological conditions of plane surface machining on a triangular milling cutter on the residual hysteresis of the movement axis of the machine, Advances in Science and Technology Research Journal, 11(3), 240–245.
  • 15. Wyrażanie niepewności pomiaru. Przewodnik, Główny Urząd Miar, 1999.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a31c9e1-da64-47d7-9aaa-95ae659eef5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.