PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Robust diagnostics of complex chemical processes: main problems and possible solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is aimed at presenting a study of the main limitations and problems influencing the robustness of diagnostic algorithms used in diagnostics of complex chemical processes and to present the selected exemplary solutions of how to increase it. The five major problems were identified in the study. They are associated with: uncertainties of fault detection and reasoning, changes of the diagnosed process structure, delays of fault symptoms formation and multiple faults. A brief description and exemplary solutions allowing increase of the robustness of diagnostic algorithms were given. Proposed methods were selected keeping in mind applicability for the on-line monitoring and diagnostics of complex chemical processes.
Rocznik
Strony
165–--183
Opis fizyczny
Bibliogr. 69 poz., rys.
Twórcy
  • Warsaw University of Technology, Institute of Automatic Control and Robotics, ul. ´sw. A. Boboli 8, 02-525 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Automatic Control and Robotics, ul. ´sw. A. Boboli 8, 02-525 Warsaw, Poland
Bibliografia
  • 1. Barty´s M., 2014. Multiple fault isolation algorithm based on binary diagnostic matrix. In: Korbicz J., Kowal M. (Eds), Intelligent systems in technical and mechanical diagnostics. Springer-Verlag Berlin – Heidelberg, 441– 452. DOI: 10.1007/978-3-642-39881-0.
  • 2. Basseville M., Nikiforov I.V., 1993. Detection of abrupt changes – Theory and application. Prentice-Hall, Englewood Cliffs, NJ.
  • 3. Betz B., Neupert D., Schlee M., 1992. Einsatz eines Expertensystems zur zustandsorientierten U˝ berwachung und Diagnose von Kraftwerksprozessen, Elektrizitätswirtschaft, H.20, 1297–1305.
  • 4. Blanke M., Kinnaert M., Lunze J., Staroswiecki M., 2004. Diagnosis and fault-tolerant. Springer-Verlag; 2004.
  • 5. Calado J.M.F., Korbicz J., Patan K., Patton R.J., Sá da Costa J.M.G., 2001. Soft computing approaches to fault diagnosis for dynamic systems. Eur. J. Control, 7, 248–286. DOI: 10.3166/ejc.7.248-286.
  • 6. Cassar J.P.H., Ferhati R.,Woinet R., 1994. Fault detection and isolation system for a rafinery unit. IFAC Symposiumon Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’94, Espoo, Finland, 13–16 June 1994, 802–804.
  • 7. Combastel C., Gentil S., Rognon J.P., 2003. Toward a better integration of residual generation and diagnostic decision. Proc. 5th IFAC Symposium SAFEPROCESS‘2003, Washington D.C., USA.
  • 8. Cordier M.O., Dague P., Dumas M., Levy F., Montmain J., Staroswiecki M., Trave-Massuyes M. AI and automatic control approaches of model-based diagnosis: Links and underlying hypotheses. Proc. 4th IFAC Symp. on Fault Detection Supervision and Safety for Technical Processes 2000 (SAFEPROCESS 2000), Budapest, Hungary, 14 16 June 2000, 274–279.
  • 9. Chen J., Patton R., 1999. Robust model based fault diagnosis for dynamic systems. Kluwer Akademic Publishers, Boston.
  • 10. Daigle M., Koutsoukos X., Biswas G., 2005. Relative measurement orderings in diagnosis of distributed physical systems. Proc. 43rd Annual Allerton Conference on Communication, Control, and Computing, 1707–1716.
  • 11. de Kleer J., Kurien J., 2003. Fundamentals of model-based diagnosis. Proc. of 5th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes SAFEPROCESS 2003, Washington, D.C., USA, 9–11 June 2003, 25–36.
  • 12. de Kleer J., Williams B.C., 1987. Diagnosing multiple faults. Artif. Intell., 32, 97–130. DOI: 10.1016/0004- 3702(87)90063-4.
  • 13. Frank P.M., 1987. Fault diagnosis in dynamic systems via state estimations methods – A survey. In: Tzafestas S.G., Singh M., Schmidt G. (Eds), System fault diagnostics, reliability and related knowledge-based approaches. Springer Netherlands, 35–98. DOI: 10.1007/978-94-009-3929-5.
  • 14. Frank P.M., 1990. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results. Automatica, 26, 459–474. DOI: 10.1016/0005-1098(90)90018-D.
  • 15. Frank P.M., 1994. Fuzzy supervision. Application of fuzzy logic to process supervision and fault diagnosis. Int. Workshop Fuzzy Technologies in Automation and Intelligent Systems, Fuzzy Duisburg’94, Duisburg, Germany, 36–59.
  • 16. Frank P.M., Marcu T., 2000. Diagnosis strategies and system: Principle, fuzzy and neural approaches, In: Teodorescu
  • 17. H., Mlynek D., Kandel A., Zimmermann H.J. (Eds), Intelligent Systems and Interfaces. Springer US.
  • 18. Gertler J., 1998. Fault detection and diagnosis in engineering systems. Marcel Dekker, Inc. New York – Basel – Hong Kong.
  • 19. Häjhä P., Lautala P., 1997 Hierarchical model based fault diagnosis system. Application to binary distillation process. IFAC Symposium on Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’97,Hull, UK, 395–400.
  • 20. Himmelblau D., 1978. Fault detection and diagnosis in chemical and petrochemical processes. Elsevier, Amsterdam.
  • 21. Hwee T.N., 1991. Model-based, multiple-fault diagnosis of dynamic, continuous physical devices. IEEE Expert, 6 (6), 38–43. DOI: 10.1109/64.108950.
  • 22. Isermann R., 2005. Model-based fault-detection and diagnosis – Status and applications. Annu. Rev. Control, 29 71–85. DOI: 10.1016/j.arcontrol.2004.12.002.
  • 23. Isermann R., 2006. Fault diagnosis systems. An introduction from fault detection to fault tolerance. Springer- Verlag, New York.
  • 24. Isermann R., Ballé P., 1997. Trends in the application of model-based fault detection and diagnosis of technical process. Control Eng. Pract., 5, 709–719. DOI: 10.1016/S0967-0661(97)00053-1.
  • 25. Jouma T., Parkkinen R., 1991. An expert system for fault diagnosis an condition monitoring of an air pressure system. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes SAFEPROCESS’97, Baden Baden, Germany, 57–60.
  • 26. Korbicz J., 2006. Robust fault detection using analytical and soft computing methods. Bulletin of the Polish Academy Sciences: Technical Sciences, 54 (1), 75–88.
  • 27. Korbicz J., Ko´scielny J.M. (Eds)., 2010. Modeling, diagnostics and process control. Implementation in the DiaSter system. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-16653-2.
  • 28. Korbicz J., Ko´scielny J.M., Kowalczuk Z., CholewaW. (Eds), 2004. Fault Diagnosis: Models, artificial intelligence methods, applications. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-18615-8.
  • 29. Kościelny J.M., 1995. Fault isolation in industrial processes by dynamic table of states method. Automatica, 31, 747–753. DOI: 10.1016/0005-1098(94)00147-B.
  • 30. Kościelny J.M., Barty´s M., Syfert M., 2008. Diagnostics of industrial processes in decentralised structures with application of fuzzy logic. Proc. 17th IFAC World Congress, Seoul, Korea, 6–11 July 2008.
  • 31. Kościelny J.M., Barty´s M., Syfert M., 2012. Method of multiple fault isolation in large scale systems. IEEE Trans. Control Syst. Technol., 20 (5), 1302–1310. DOI: 10.1109/TCST.2011.2162587.
  • 32. Kościelny J.M., Leszczyn´ski M., Syfert M., Gasecki A., 2010. Monitoring of the degree of coking in HOG plant. Maintenance Problems, 4, 177–191.
  • 33. Kościelny J.M., Ostasz A., 2003. Application of causal graph for description of diagnosed process. Proc. 5th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’ 2003, USA, Washington, June 9–11 2003, 879–884.
  • 34. Kościelny J.M., S˛edziak D., Zakroczymski K., 1999. Fuzzy logic fault isolation in large scale systems. Int. J. Appl. Math. Comput. Sci., 9 (3), 637–652.
  • 35. Kościelny J.M., Syfert M., 2003. Fuzzy logic application to diagnostics of industrial processes. 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes SAFEPROCESS‘2003,Washington D.C., USA, 771–776.
  • 36. Kościelny J.M., Syfert M., 2006. Fuzzy diagnostic reasoning that takes into account the uncertainty of the faultssymptoms relation. Int. J. Appl. Math. Comput. Sci., 16 (1), 27–35.
  • 37. Kościelny J.M., Syfert M., 2007. The issue of symptom based diagnostic reasoning, In: Jabło´nski R., Turkowski M., Szewczyk R. (Eds), Recent advances in mechatronics. Springer, Berlin, Heidelberg, 167–171. DOI: 10.1007/978-
  • 38. Kościelny J., Syfert M., Wnuk P., 2006. Advanced monitoring and diagnostic system ‘AMandD’. IFAC Proceedings Volumes, 39 (13), 635–640.
  • 39. Leonhardt S., Ayoubi M., 1997. Methods of fault diagnosis. Control Eng. Pract., 5 (5), 683–692. DOI: 10.1016/ S0967-0661(97)00050-6.
  • 40. Ligęza A., Ko´scielny J.M., 2008. A new approach to multiple fault diagnosis. combination of diagnostic matrices, graphs, algebraic and rule-based models. The case of two-layer models. Int. J. Appl. Math. Comput. Sci., 18 (4), 465–476.
  • 41. Liu J., Chen D.S., 2014. Fault isolation using modified contribution plots. Comput. Chem. Eng., 61, 9–19. DOI: 10.1016/j.compchemeng.2013.10.004.
  • 42. Lore J.P., Lucas B., Evrard J.M., 1994. Sextant: An interpretation system for continuous processes. IFAC Symposiu on Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’94, 655–660.
  • 43. Meseguer J., Puig V., Escobet T., 2008. Fault diagnosis using a timed discrete event approach based on observers. 17th IFAC World Congress, Seoul, Korea, 6914–6919.
  • 44. Milanese M., 2004. Set Membership identification of nonlinear systems. Automatica, 40, 957–975. DOI: 10.1016/ j.automatica.2004.02.002.
  • 45. Milne R., Travé-Massuyès L., 1997. Model based aspects of the Tiger gas turbine condition monitoring system. IFAC Symposium on Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’97, Hull, UK, 420–425.
  • 46. Monroy I., Benitez R., Escudero G., Graells M., 2012. Enhanced plant fault diagnosis based on the characterization of transient stages. Comput. Chem. Eng., 37, 200–213. DOI: 10.1016/j.compchemeng.2011.12.006.
  • 47. Mrugalski M., 2013. An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection. Int. J. Appl. Math. Comput. Sci., 23 (1), 157–169.
  • 48. Natarajan S., Srinivasan R., 2014. Implementation of multi agents based system for process supervisionin largescale chemical plants. Comput. Chem. Eng., 60, 182–196. DOI: 10.1016/j.compchemeng.2013.08.012.
  • 49. Nyberg M., Krysander M., 2003. Combining AI, FDI, and statistical hypothesis-testing in a framework for diagnosis. Proc. 5th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes – SAFEPROCES 2003, Washington, D.C., USA, 891–896.
  • 50. Patan K., Witczak M., Korbicz J., 2008. Towards robustness in neural network based fault diagnosis. Int. J. Appl. Math. Comput. Sci., 18 (4), 443–454.
  • 51. Patton R., Frank P., Clark R. (Eds), 2000. Issues of fault diagnosis for dynamic systems. Springer, London. DOI: 10.1007/978-1-4471-3644-6.
  • 52. Patton R.J., Lopez-Toribio C.J., Uppal F.J., 1999. Artificial intelligence approaches to fault diagnosis for dynamic systems. Int. J. Appl. Math. Comput. Sci., 9 (3), 471–518.
  • 53. Puig V., Stancu A., Escobet T., Nejjari F., Quevedo J., Patton R.J., 2006. Passive robust fault detection using interval observers: Application to the DAMADICS benchmark problem. Control Eng. Pract., 14 (6), 621–633. DOI: 10.1016/j.conengprac.2005.03.016.
  • 54. Pulido B., Puig V., Escobet T., Quevedo J., 2005. A new fault isolation algorithm that improves the integration between fault detection and localization in dynamic systems. Proc. 16th International Workshop on Principles of Diagnosis (DX 05), Monterey, California, USA.
  • 55. Reiter R.A., 1987. Theory of diagnosis from first principles. Artif. Intell., 32, 57–95. DOI: 10.1016/0004-3702(87) 90062-2.
  • 56. Schlee M., Simon E., 1994. MODI an expert system supporting reliable, economical power plant control. ABB Review; 6–7, 39–46.
  • 57. Schubert U., Arellano-Garcia H., Wozny G., 2009. Detection of process and sensor faults using model-based approaches in industrial batch processes. Chem. Process Eng., 30 (3), 369–388.
  • 58. Syfert M., 2006. The issue of diagnostic relation uncertainty and fault conditional isolability. Proc. 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, August 29–September 1, Beijing, P.R. China, Vol. 6, Part 1, 747–752.
  • 59. Syfert M., Ko´scielny J.M., 2009a. The issue of diagnostic reasoning in the case of variability of diagnosed system structure. In: Kowalczuk Z. (Eds), Fault detection, analysis and tolerant systems; PWNT Gda´nsk, 237–244.
  • 60. Syfert M., Ko´scielny J.M., 2009. Diagnostic Reasoning Based on Symptom Forming Sequence. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, June 30 – July 3 2009 Barcelona, Spain, 89–94. DOI: 10.3182/20090630-4-ES-2003.00015.
  • 61. Syfert M., Rzepiejewski P., Wnuk P., Ko´scielny J.M., 2005. Current diagnostics of the evaporation station. 16th IFAC World Congress, 4–8 July 2005, Prague, Czech Republic., 1862–1862. DOI: 10.3182/20050703-6-CZ-1902.01863.
  • 62. Syfert M., Wnuk P., Ko´scielny J.M., 2011. DiaSter – Intelligent system for diagnostics and automatic control support of industrial processes. JAMRIS – J. Autom., Mobile Rob. Intell. Syst., 5 (4), 41–46.
  • 63. Theilliol D., Aubrun C., Giraud D., Ghetie M., 1997. Dialogs: A fault diagnostic toolbox for industrial processes. IFAC Symposium on Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’97, Hull, UK, Vol. 1, 389–394.
  • 64. Van den Kerkhof P., Gins G., Vanlaer J., Jan F.M., Van Impe J.F.M., 2012. Dynamic model-based fault diagnosis for (bio)chemical batch processes. Comput. Chem. Eng., 40, 12–21. DOI: 10.1016/j.compchemeng.2012.01.013.
  • 65. Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N., 2003. A review of process fault detection and diagnosis: Part I: Quantitative model-based methods. Comput. Chem. Eng., 27, 293–311. DOI: 10.1016/S0098-1354(02)00160-6.
  • 66. Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N., 2003. A review of process fault detection and diagnosis: Part II: Qualitative model and search strategies. Comput. Chem. Eng., 27, 313–326. DOI: 10.1016/S0098-1354(02)00161-8.
  • 67. Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N., 2003. A review of process fault detection and diagnosis: Part III: Process history based methods. Comput. Chem. Eng., 27, 327–346. DOI: 10.1016/S0098-1354(02)00162-X.
  • 68. Willsky A.S., 1976. A survey of design methods for failure detection in dynamic systems. Automatica, 12, 601– 611. DOI: 10.1016/0005-1098(76)90041-8.
  • 69. Witczak M., 2007. Modelling and estimation strategies for fault diagnosis of non-linear systems. From analytical to soft computing approaches. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-71116-2.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a2d178b-183b-4156-a314-2caa67ea3073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.