PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency reconfigurable microstrip antenna array based on reconfigurable defected ground structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Antena mikropaskowa z możliwością rekonfiguracji częstotliwości w oparciu o rekonfigurowalną strukturę uszkodzonego uziemienia
Języki publikacji
EN
Abstrakty
EN
In this article, a frequency reconfigurable microstrip antenna array based on a defected ground structure is presented for C-band applications. The proposed antenna used the integration of two patches and the feeding network attached with a circular defected ground structure. The reconfigurable feature of the proposed antenna array is realized using a single switch inserted on the circular defected ground structure to modify the current distribution on the ground plane, which changes the resonance frequency. By switching the switch OFF, the antenna array eligible to resonate at two states and thus array centered at 4.83 and 5.36 GHz simultaneously. While switching ON, the antenna array eligible resonates at three states, and then the antenna array centered at 5, 5.52, and 5.90 GHz simultaneously. Furthermore, design steps, impedance bandwidth, and radiation patterns are introduced for the description and analysis of this antenna array. The finalized antenna array is simulated, manufactured, and measured successfully.
PL
W tym artykule przedstawiono układ anten mikropaskowych o rekonfigurowalnej częstotliwości, oparty na strukturze uszkodzonego uziemienia, do zastosowań w paśmie C. Proponowana antena wykorzystywała integrację dwóch łat i sieci zasilającej połączonej z kołową uszkodzoną strukturą uziemienia. Rekonfigurowalna cecha proponowanego szyku antenowego jest realizowana za pomocą pojedynczego przełącznika umieszczonego na kołowej uszkodzonej strukturze uziemienia w celu modyfikacji rozkładu prądu na płaszczyźnie uziemienia, co zmienia częstotliwość rezonansową. Po wyłączeniu przełącznika szyk antenowy kwalifikuje się do rezonansu w dwóch stanach, a zatem szyk jest wyśrodkowany jednocześnie na 4,83 i 5,36 GHz. Podczas włączania, szyk antenowy uprawniony do rezonowania w trzech stanach, a następnie szyk antenowy wyśrodkowany jednocześnie na 5, 5,52 i 5,90 GHz. Ponadto do opisu i analizy tego układu antenowego wprowadzono etapy projektowania, szerokość pasma impedancji i charakterystyki promieniowania. Gotowa szyka antenowa jest z powodzeniem symulowana, produkowana i mierzona.
Rocznik
Strony
114--120
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Mosul Technical Institute, Northern Technical University, (NTU) 41002 Mosul, Iraq
  • Universiti Teknikal Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka
Bibliografia
  • [1] X. Zhao, S. Riaz, A Dual-Band Frequency Reconfigurable MIMO Patch-Slot Antenna Based on Reconfigurable Microstrip Feedline, IEEE Access, vol. 6, pp 41450–41457, 2018.
  • [2] A. Boukarkar, X. Q. Lin, Y. Jiang, X. F. Yang, A Compact Frequency-Reconfigurable 36-States Patch Antenna for Wireless Applications, IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 7, pp 1349–1353, 2018.
  • [3] H. H. Keriee, M. K. A. Rahim, N. A. Nayyef, Z. Zakaria, and A. J. A. Al-Gburi, “High gain antenna at 915 MHz for off grid wireless networks,” Bull. Electr. Eng. Informatics, vol. 9, no. 6, pp. 2449–2454, 2020.
  • [4] A. J. A. Al-Gburi, I. Ibrahim, and Z. Zakaria, “Gain Enhancement for Whole Ultra-Wideband Frequencies of a Microstrip Patch Antenna,” J. Comput. Theor. Nanosci., vol. 17, no. 2–3, pp. 1469–1473, 2020.
  • [5] M. Y. Zeain et al., “Design of helical antenna for next generation wireless communication,” Prz. Elektrotechniczny, no. 11, pp. 96–99, 2020.
  • [6] T. Li, H. Zhai, X. Wang, L. Li, C. Liang, Frequency- Reconfigurable Bow-Tie Antenna for Bluetooth, WiMAX, and WLAN Applications, IEEE Antennas Wirel. Propag. Lett., vol. 14, pp171–174, 2015.
  • [7] N. Haider, A. G. Yarovoy, A. G. Roederer, L/S-Band Frequency Reconfigurable Multiscale Phased Array Antenna with Wide Angle Scanning, IEEE Trans. on Antennas and Propag., vol. 65, pp 4519–4528, 2017.
  • [8] O. J. Famoriji, S. Yang, Y. Li, W. Chen, A. Fadamiro, Z. Zhang, F. Lin, Design of A Simple Circularly Polarised Dual-Frequency Reconfigurable Microstrip Patch Antenna Array for Millimetre- Wave Applications, IET Microwaves, Antennas & Propag., vol. 13, no. 10, pp 671–1677, 2019.
  • [9] A. O. Fadamiro, O. J. Famoriji, R. S. Zakariyya, Z. Zhang, F. Lin, Design of H-Tree Fractal Slots Frequency Reconfigurable Hexagonal Patch Antenna using PIN Diodes, J. Electromagnetic Waves and Applications, vol. 33, no. 12, pp 1591–1604, 2019.
  • [10] M. C. Lim, S. K. A. Rahim, M. R. Hamid, A. A. Eteng, M. F. Jamlos, A. A. Eteng, M. R. Hamid, S. K. A. Rahim, Frequency Reconfigurable Antenna for WLAN Application, Microw. Optical Technology Lett., vol. 59, no. 1, pp 171–176, 2017.
  • [11] S. Tripathi, N. P. Pathak, M. Parida, A Compact Reconfigurable Aperture Coupled Fed Antenna for Intelligent Transportation System Application, Int. J. of RF and Microw. Computer-Aided Engineering, vol. 30, no. 7, pp 1–10, 2020.
  • [12] I. Nazir, I. E. Rana, N. ul A. Mir, K. Afreen, Design and Analysis of A Frequency Reconfigurable Microstrip Patch Antenna Switching Between Four Frequency Bands, Progress in Electromagnetics Research C, vol. 68, pp 179–191, 2016.
  • [13] M. E. Yassin, H. A. Mohamed, E. A. F. Abdallah, H. S. El- Hennawy, Circularly Polarized Wideband-to-Narrowband Switchable Antenna, IEEE Access, vol. 7, pp 36010–36018, 2019.
  • [14] Tanweer Ali, Rajashekhar C. Biradar, A Compact Hexagonal Slot Dual Band Frequency Reconfigurable Antenna for WLAN Applications, Microw. Optical Technology Lett., vol. 59, no. 4, pp 958–964, 2017.
  • [15] G. Jin, C. Deng, Y. Xu, J. Yang, S. Liao, Differential Frequency-Reconfigurable Antenna Based on Dipoles for Sub- 6 GHz 5G and WLAN Applications, IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 3, pp 472–476, 2020.
  • [16] F. A. Asadallah, J. Costantine, Y. Tawk, A Multiband Compact Reconfigurable PIFA Based on Nested Slots, IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 2, pp 331–334, 2018.
  • [17] A. Romputtal, C. Phongcharoenpanich, Frequency Reconfigurable Multiband Antenna with Embedded Biasing Network, IET Microw. Antennas Propag., vol. 11, no. 10, pp 1369–1378, 2017.
  • [18] D. Abijuru, M. R. Hamid, Pattern and Frequency Reconfigurable Antenna for Body Area Network (BAN), Jurnal Teknologi, vol. 76, no. 1, pp 245–252, 2015.
  • [19] Y. I. Abdulraheem, George A. Oguntala, Abdulkareem S. Abdullah, Husham J. Mohammed, Ramzy A. Ali, Raed A. Abd- Alhameed, James M. Noras, Design of Frequency Reconfigurable Multiband Compact Antenna Using Two PIN Diodes for WLAN/WiMAX Applications, IET Microw., Antennas Propag., vol. 11, no. 8, pp 1098–1105, 2017.
  • [20] S. Pandit, A. Mohan, P. Ray, Compact Frequency120 Reconfigurable MIMO Antenna for Microwave Sensing Applications in WLAN and WiMAX Frequency Bands, IEEE Sensors Lett., vol. 2, no. 2, pp 1–4, 2018.
  • [21] Shakhirul Mat Salleh, Muzammil Jusoh, Abdul Hafiizh Ismail, Muhammad Ramlee Kamarudin, Philip Nobles, Mohamad Kamal A Rahim, Thennarasan. Sabapathy, Mohamed Nasrun Osman, Mohd Ilman Jais, Ping Jack Soh, Textile Antenna with Simultaneous Frequency and Polarization Reconfiguration for WBAN, IEEE Access, vol. 6, pp 7350–7358, 2017.
  • [22] Y. Tawk, A. El-Amine, S. Saab, J. Costantine, F. Ayoub, C. G. Christodoulou, A Software-Defined Frequency-Reconfigurable Meandered Printed Monopole, IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 2, pp 327–330, 2018.
  • [23] I. A. Shah , S. Hayat, A. Basir, M. Zada, S. A. A. Shah, S. Ullah, S. Ullah, Design and Analysis of A Hexa-Band Frequency Reconfigurable Antenna for Wireless Communication, AEU Int. J. of Electronics and Communications, vol. 98, pp 1–11, 2019.
  • [24] Anuradha A. Palsokar, S. L. Lahudkar, Frequency and Pattern Reconfigurable Rectangular Patch Antenna Using Single PIN Diode, AEU Int. J. of Electronics and Communications, vol. 125, pp 1–7, 2020.
  • [25] Y. M. Cai, K. Li, Y. Yin, S. Gao, W. Hu, L. Zhao, A Low-Profile Frequency Reconfigurable Grid-Slotted Patch Antenna, IEEE Access, vol. 6, pp 36305–36312, 2018.
  • [26] B. J. Liu, J. H. Qiu, S. C. Lan, G. Q. Li, A Wideband-to- Narrowband Rectangular Dielectric Resonator Antenna Integrated with Tunable Bandpass Filter, IEEE Access, vol. 7, pp 61251–61258, 2019.
  • [27] C. Guo, Lianwen Deng, Jian Dong, Tulin Yi, Congwei Liao, Shengxiang Huang, Heng Luo, Variode Enabled Frequency- Reconfigurable Microstrip Patch Antenna with Operation Band Covering S and C Bands, Progress In Electromagnetics Research M, vol. 88, pp 159–167, 2020.
  • [28] S. K. Muthuvel, Y. K. Choukiker, Frequency Tunable Circularly Polarized Antenna with Branch Line Coupler Feed Network for Wireless Applications, Int. J. of RF and Microwave Computer- Aided Engineering, vol. 29, no. 8, pp 1–9, 2019.
  • [29] G. Chaabane, V. Madrangeas, M. Chatras, E. Arnaud, L. Huitema, P. Blondy, High-linearity 3-Bit Frequency-Tunable Planar Inverted-F Antenna for RF Applications, IEEE Antennas Wirel. Propag. Lett., vol. 16, pp 983–986, 2017.
  • [30] K. S. Ahmad, M. Z. A. A. Aziz, and N. B. Abdullah, A Dual- Band Frequency Reconfigurable Antenna Array Based on Reconfigurable Defected Ground Structure, 2020 IEEE Int. RF Microw. Conf. (RFM), pp. 1–4, 2020.
  • [31] A. J. A. Al-gburi, I. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, Compact Size and High Gain of CPW-fed UWB Strawberry Artistic shaped Printed Monopole Antennas using FSS Single Layer Reflector, IEEE Access, vol. 8, no. 5, pp. 92697–92707, 2020.
  • [32] A. J. A. AL-Gburi et al., A Compact UWB FSS Single Layer with Stopband Properties for Shielding Applications, Prz. Elektrotechniczny, vol. 97, no. 3, pp. 165–168, 2021.
  • [33] M. Ibrahim, A. J. A. Al-gburi, Z. Zakaria, and H. A. Bakar, Parametric Study of Modified U-shaped Split Ring Resonator Structure Dimension at Ultra-Wide-band Monopole Antenna, J. Telecommun. Electron. Comput. Eng., vol. 10, no.2, pp. 53–57, 2018.
  • [34] A. J. A. Al-gburi, I. M. Ibrahim, and Z. Zakaria, “Band-notch effect of U-shaped split ring resonator structure at ultra wideband monopole antenna,” Int. J. Appl. Eng. Res., vol. 12, no. 15, pp. 4782–4789, 2017.
  • [35] K. S. Ahmad, F. C. Seman, S. A. Hamzah, G. C. Hock, and S. M. Shah, Circuit Model for Microstrip Array Antenna with Defected Ground Structures for Mutual Coupling Reduction and Beamforming Applications, Int. J. Integr. Eng., vol. 13, no. 1, pp. 101–119, 2021.
  • [36] K. S. Ahmad, M. Z. A. A. Aziz, and N. B. Abdullah, Microstrip Antenna Array with Defected Ground Structure and Copper Tracks for Bandwidth Enhancement, 2020 IEEE Int. RF Microw. Conf. (RFM), pp. 1–5, 2020.
  • [37] M. K. Khandelwal, B. K. Kanaujia, and S. Kumar, Defected ground structure: fundamentals, Analysis, and applications in modern wireless trends, Int. J. Antennas Propag., 2017, pp 1– 22, 2017.
  • [38] N. AL-Fadhali, H. Majid, and R. Omar, Multiband Frequency Reconfigurable Substrate Integrated Waveguide Antenna Using Copper Strip for Cognitive Radio Applicable to Internet of Things Application, Telecommun. Syst., vol. 76, no. 3, pp 1-14, 2020.
  • [39] B. Li, J. Hong, and B. Wang, Switched Band-Notched UWB/Dual-Band WLAN Slot Antenna with Inverted S-Shaped Slots, IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 572– 575, 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a28828e-6e41-42cc-a2c9-3d2d20fa0a11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.