PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reactive distillation for multiple-reaction systems: optimisation study using an evolutionary algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reactive distillation (RD) has already demonstrated its potential to significantly increase reactant conversion and the purity of the target product. Our work focuses on the application of RD to reaction systems that feature more than one main reaction. In such multiple-reaction systems, the application of RD would enhance not only the reactant conversion but also the selectivity of the target product. The potential of RD to improve the product selectivity of multiple reaction systems has not yet been fully exploited because of a shortage of available comprehensive experimental and theoretical studies. In the present article, we want to theoretically identify the full potential of RD technology in multiple-reaction systems by performing a detailed optimisation study. An evolutionary algorithm was applied and the obtained results were compared with those of a conventional stirred tank reactor to quantify the potential of RD to improve the target product selectivity of multiple-reaction systems. The consecutive transesterification of dimethyl carbonate with ethanol to form ethyl methyl carbonate and diethyl carbonate was used as a case study.
Rocznik
Strony
17--38
Opis fizyczny
Bibliogr. 82 poz., tab., rys.
Twórcy
autor
  • TU Dortmund University, Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations, Emil-Figge-Strasse 70, D-44227 Dortmund, Germany
  • TU Dortmund University, Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Engineering, Emil-Figge-Strasse 70, D-44227 Dortmund, Germany
autor
  • TU Dortmund University, Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations, Emil-Figge-Strasse 70, D-44227 Dortmund, Germany
  • Lodz Technical University, Department of Environmental and Process Engineering, Lodz, Poland
Bibliografia
  • 1. Abrams D.S., Prausnitz J.M., 1975. Statistical thermodynamics of liquid mixtures: A new expression for the excess energy of partly or completely miscible systems. AlChE J., 21, 116–128. DOI: 10.1002/aic.690210115.
  • 2. Agreda V.H., Partin L.R., Heise W.H., 1990. High-purity methyl acetate via reactive distillation. Chem. Eng. Prog., 86, 40–46.
  • 3. Almeida-Rivera C.P., Swinkels P.L.J., Grievink J., 2004. Designing reactive distillation processes: Present and future. Comput. Chem. Eng., 28, 1997–2020. DOI: 10.1016/j.compchemeng.2004.03.014.
  • 4. Babu B.V., Khan M., 2007. Optimisation of reactive distillation processes using differential evolution strategies. Asia-Pac. J. Chem. Eng., 2, 322–335. DOI: 10.1002/apj.89.
  • 5. Baeck T., 1996. Evolutionary algorithms in theory and practice. Evolution strategies, evolutionary programming, genetic algorithms. 1st edition, Oxford Univ. Press, New York.
  • 6. Bolon D.A., Hallgren J.E., 1984. Synthesis of polycarbonate from dialkyl carbonate and bisphenol diester. U.S. Patent No. 4452968. General Electric Co., USA.
  • 7. Bravo J.L., Rocha J.A., Fair,J.R., 1985. Mass transfer in gauze packings. Hydrocarbon Process. 64, 91–95.
  • 8. Burghardt A., Warmuziński K., Buzek J., Pytlik A., 1983. Diffusional models of multicomponent distillation and their experimental verification. Chem. Eng. J., 26, 71–84. DOI: 10.1016/0300-9467(83)80001-X.
  • 9. Cardoso M.F., Salcedo R.L., Feyo de Azevedo S., Barbosa D., 2000. Optimisation of reactive distillation processes with simulated annealing. Chem. Eng. Sci., 55, 5059–5078. DOI: 10.1016/S0009-2509(00)00119-6.
  • 10. Chilton T.H., Colburn A.P., 1935. Distillation and absorption in packed columns: A convenient design and correlation method. J. Ind. Eng. Chem., 27, 255–260. DOI: 10.1021/ie50303a004.
  • 11. Ciric A.R., Gu D., 1994. Synthesis of nonequilibrium reactive distillation processes by MINLP optimisation. AlChE J., 40, 1479–1487. DOI: 10.1002/aic.690400907.
  • 12. Dakin R.J., 1965. A tree-search algorithm for mixed integer programming problems. Computer Journal, 8, 250–255. DOI: 10.1093/comjnl/8.3.250.
  • 13. Deb K., 2004. Multi-objective optimisation using evolutionary algorithms. 1st edition, Wiley-VCH, Chichester.
  • 14. Deb K., 2005. Optimisation for engineering design. 8th edition, Prentice-Hall, New Delhi.
  • 15. Ding M.S., Xu K., Zhang S.S., Amine K., Henriksen G.L., Jow T.R., 2001. Change of conductivity with salt content, solvent composition, and temperature for electrolytes of l LiPF6 in ethylene carbonate-ethyl methyl carbonate. J. Electrochem. Soc., 148, A1196. DOI: 10.1149/1.1403730.
  • 16. Doherty M.F., Malone M.F., 2001. Conceptual design of distillation systems. 1st edition, McGraw-Hill, Boston, Mass.
  • 17. Dunn B.C., Guenneau C., Hilton S.A., Pahnke J., Eyring E.M., Dworzanski J., Meuzelaar H.L.C., Hu J.Z., Solum, M.S., Pugmire R.J., 2002. Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalyst. Energy Fuels, 16, 177–181. DOI: 10.1021/ef0101816.
  • 18. Duran M.A., Grossmann I.E., 1986. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program, 36, 307–339. DOI: 10.1007/BF02592064.
  • 19. Edgar T.F., Himmelblau D.M., Lasdon L.S., 2001. Optimisation of chemical processes. 2nd edition, McGraw-Hill, Boston.
  • 20. Eiben A.E., Smith J.E., 2007. Introduction to evolutionary computing. 2nd edition, Springer, Berlin.
  • 21. Frey T., Stichlmair J., 2000. MINLP-Optimierung von Reaktivrektifikationskolonnen. Chem. Ing. Tech., 72, 1102. DOI: 10.1002/1522-2640(200009)72:9<1102::AID-CITE11020>3.0.CO;2-A.
  • 22. Gangadwala J., Kienle A., 2007. MINLP optimisation of butyl acetate synthesis. Chem. Eng. Process., 46, 107–118. DOI: 10.1016/j.cep.2006.04.009.
  • 23. Geoffrion A.M., 1972. Generalized Benders decomposition. J. Optim. Theory Appl., 10, 237–260. DOI: 10.1007/BF00934810.
  • 24. Gmehling J., Onken U., 2002. Carboxylic acids, anhydrides. Supplement 1. 1st edition, DECHEMA, Frankfurt am Main.
  • 25. Gmehling J., Onken U., Arlt W., 1977. Organic hydroxy compounds: alcohols. 1st edition, DECHEMA, Frankfurt am Main.
  • 26. Gomez J.M., Reneaume J.M., Meyer M., Meyer X., 2006. MINLP optimisation of catalytic disitllation columns using a rate-based model, In: Sorensen E. (Ed.), Proc. of the Conf. Distillation and Absorption 2006. Institution of Chemical Engineers, Rugby, 820–829.
  • 27. González-Rugerio C.A., Keller T., Pilarczyk J., Sałacki W., Górak A., 2012. TAEE synthesis from isoamylenes and ethanol by catalytic distillation: Pilot plant experiments and model validation. Fuel Process Technol. 102, 1–10. DOI: 10.1016/j.fuproc.2012.04.012.
  • 28. Górak A., Hoffmann A., 2001. Catalytic distillation in structured packings: methyl acetate synthesis. AlChE J., 47, 1067–1076. DOI: 10.1002/aic.690470513.
  • 29. Górak A., Stankiewicz A., 2011. Intensified reaction and separation systems. Annu. Rev. Chem. Biomol. Eng., 2, 431–451. DOI: 10.1146/annurev-chembioeng-061010-114159.
  • 30. Hasabnis A., Mahajani S., 2010. Entrainer-based reactive distillation for esterification of glycerol with acetic acid. Ind. Eng. Chem. Res., 49, 9058–9067. DOI: 10.1021/ie100937p.
  • 31. Hoffmann A., Noeres C., Górak A., 2004. Scale-up of reactive distillation columns with catalytic packings. Chem. Eng. Process., 43, 383–395. DOI: 10.1016/S0255-2701(03)00121-1.
  • 32. Keller T., Górak A., 2013. Modelling of homogeneously catalysed reactive distillation processes in packed columns: Experimental model validation. Comp. Chem. Eng., 48. DOI: 10.1016/j.compchemeng.2012.07.015.
  • 33. T. Keller, B. Dreisewerd, A. Górak, Chem. Process Eng., 2013, 34 (1), 17-38
  • 34. Keller T., Holtbruegge J., Górak A., 2012. Transesterification of dimethyl carbonate with ethanol in a pilot-scale reactive distillation column. Chem. Eng. J., 180, 309–322. DOI: 10.1016/j.cej.2011.11.072.
  • 35. Keller T., Holtbruegge J., Niesbach A., Górak A., 2011a. Transesterification of dimethyl carbonate with ethanol to form ethyl methyl carbonate and diethyl carbonate: A comprehensive study on chemical equilibrium and reaction kinetics. Ind. Eng. Chem. Res., 50, 11073–11086. DOI: 10.1021/ie2014982.
  • 36. Keller T., Muendges J., Jantharasuk A., Gónzalez-Rugerio C., Moritz H., Kreis P., Górak A., 2011b. Experimental model validation for n-propyl propionate synthesis in a reactive distillation column coupled with a liquid–liquid phase separator. Chem. Eng. Sci., 66, 4889–4900. DOI: 10.1016/j.ces.2011.06.056.
  • 37. Kenig E.Y., Bäder H., Górak A., Bessling B., Adrian T., Schoenmakers H., 2001. Investigation of ethyl acetate reactive distillation process. Chem. Eng. Sci., 56, 6185–6193. DOI: 10.1016/S0009-2509(01)00206-8.
  • 38. Kenig E.Y., Górak A., 2007. Modeling of reactive distillation. In: Keil F. (Ed.), Modeling of process intensification, 1st edition, Wiley-VCH, Weinheim, 323–364.
  • 39. Kiss A.A., Segovia-Hernández J.G., Bildea C.S., Miranda-Galindo E.Y., Hernández S., 2012. Reactive DWC leading the way to FAME and fortune. Fuel, 95, 352–359. DOI: 10.1016/j.fuel.2011.12.064.
  • 40. Kister H.Z., 1992. Distillation design. 1st edition, McGraw-Hill, New York.
  • 41. Kloeker M., Kenig E.Y., Hoffmann A., Kreis P., Górak A., 2005. Rate-based modelling and simulation of reactive separations in gas/vapour-liquid systems. Chem. Eng. Process. 44, 617–629. DOI: 10.1016/j.cep.2003.12.011.
  • 42. Leino E., Mäki-Arvela P., Eta V., Murzin D.Y., Salmi T., Mikkola J.-P., 2010. Conventional synthesis methods of short-chain dialkylcarbonates and novel production technology via direct route from alcohol and waste CO2. Appl. Catal., A 383, 1–13. DOI: 10.1016/j.apcata.2010.05.046.
  • 43. Lewis W.K., Whitman W.G., 1924. Principles of gas absorption. Ind. Eng. Chem. Res., 16, 1215–1220. DOI: 10.1021/ie50180a002.
  • 44. Luo H.-P., Xiao W.-D., 2001. A reactive distillation process for a cascade and azeotropic reaction system: Carbonylation of ethanol with dimethyl carbonate. Chem. Eng. Sci., 56, 403–410. DOI: 10.1016/S00092509(00)00242-6.
  • 45. Luo H.-P., Xia, W.-D., Zhu K.-H., 2000. Isobaric vapour-liquid equilibria of alkyl carbonates with alcohols. Fluid Phase Equilib., 175, 91–105. DOI: 10.1016/S0378-3812(00)00444-1.
  • 46. Marshall S., Ratnakumar B., Subbarao S., 2011. Ethyl methyl carbonate as a cosolvent for lithium-ion cells. NASA Tech Briefs. Retrieved May 2011 from http://www.nasatech.com/Briefs/June01/NPO20605.html.
  • 47. Mueller I., Kenig E.Y., 2007. Reactive distillation in a dividing wall column: rate-based modeling and simulations. Ind. Eng. Chem. Res., 46, 3709–3719. DOI: 10.1021/ie0610344.
  • 48. NIST, 2009. Chemistry web book. Retrieved December 2009 from http://webbook.nist.gov/chemistry.
  • 49. Noeres C., Kenig E.Y., Górak A., 2003. Modelling of reactive separation processes: reactive absorption and reactive distillation. Chem. Eng. Process., 42, 157–178. DOI: 10.1016/S0255-2701(02)00086-7.
  • 50. Okuno H., Koshina H., Morita A., 1996. Secondary nonaqueous-electrolyte battery. U.S. Patent No. 5521027. Matsushita Electric Industrial Co., Ltd., Japan.
  • 51. Orjuela A., Kolah A., Hong X., Lira C.T., Miller D.J., 2011. Diethyl succinate synthesis by reactive distillation. Sep. Purif. Technol., 88, 151–162. DOI: 10.1016/j.seppur.2011.11.033.
  • 52. Pacheco M.A., Marshall C.L., 1997. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels, 11, 2–29. DOI: 10.1021/ef9600974.
  • 53. Plichta E.J., Behl W.K., 2000. A low-temperature electrolyte for lithium and lithium-ion batteries. J. Power Sources, 88, 192–196. DOI: 10.1016/S0378-7753(00)00367-0.
  • 54. Poth N., Brusis D., Stichlmair J., 2003. Rigorous optimisation of reactive distillation in GAMS with the use of external functions. Comput. Aided Chem. Eng., 14, 869–874. DOI: 10.1016/S1570-7946(03)80226-2.
  • 55. Rahman I., Ahmad A., Kuma, P., Kulkarni B.D., 2008. Optimisation of a continuous process for the recovery of lactic acid using differential evolution algorithm. Chem. Prod. Process Model., 3, 6. DOI: 10.2202/19342659.1111.
  • 56. Rocha J.A., Bravo J.L., Fair J.R., 1993. Distillation columns containing structured packings: a comprehensive model for their performance: hydraulic models. Ind. Eng. Chem. Res., 32, 641–651. DOI: 10.1021/ie00016a010.
  • 57. Rodríguez A., Canosa J., Domínguez A., Tojo J., 2002. Vapour-liquid equilibria of dimethyl carbonate with linear alcohols and estimation of interaction parameters for the UNIFAC and ASOG method. Fluid Phase Equilib., 201, 187–201. DOI: 10.1016/S0378-3812(02)00201-7.
  • 58. Reactive distillation for multiple-reaction systems: optimisation study using an evolutionary algorithm
  • 59. Rodríguez A., Canosa J., Domínguez A., Tojo J., 2003. Isobaric phase equilibria of diethyl carbonate with five alcohols at 101.3 kPa. J. Chem. Eng. Data, 48, 86–91. DOI: 10.1021/je0201018.
  • 60. Schmidt-Traub H., Górak A., 2006. Integrated reaction and separation operations. 1st edition, Springer, Berlin.
  • 61. Schmitt M., Hasse H., Althaus K., Schoenmakers H., Goetze L., Moritz P., 2004. Synthesis of n-hexyl acetate by reactive distillation. Chem. Eng. Process., 43, 397–409. DOI: 10.1016/S0255-2701(03)00124-7.
  • 62. Schoenmakers H., Besslin, B., 2003. Reactive and catalytic distillation from an industrial perspective. Chem. Eng. Process., 42, 145–155. DOI: 10.1016/S0255-2701(02)00085-5.
  • 63. Schwefel H.-P., 1981. Numerical optimisation of computer models. 1st edition, Wiley-VCH, Chichester.
  • 64. Schwefel H.-P., 1995. Evolution and optimum seeking. 1st edition, Wiley-VCH, New York.
  • 65. Smith J.E., 2008. Self-adaptation in evolutionary algorithms for combinatorial optimisation. In: Cotta C., Sevaux M., Soerensen K. (Eds.), Adaptive and multilevel metaheuristics. 1st edition, Springer, Berlin, Heidelberg, 31– 57
  • 66. Stankiewicz A., 2003. Reactive separations for process intensification: an industrial perspective. Chem. Eng. Process., 42, 137–144. DOI: 10.1016/S0255-2701(02)00084-3.
  • 67. Steinigeweg S., Gmehling J., Gmehling J., 2004. Transesterification processes by combination of reactive distillation and pervaporation. Chem. Eng. Process., 43, 447–456. DOI: 10.1016/S0255-2701(03)00129-6.
  • 68. Sulzer Chemtech, 2004. Sulpak.
  • 69. Suman T., Srinivas S., Mahajani S.M., 2009. Entrainer based reactive distillation for esterification of ethylene glycol with acetic acid. Ind. Eng. Chem. Res., 48, 9461–9470. DOI: 10.1021/ie801886q.
  • 70. Sundmacher K., Hoffmann U., 1996. Development of a new catalytic distillation process for fuel ethers via a detailed nonequilibrium model. Chem. Eng. Sci., 51, 2359–2368. DOI: 10.1016/0009-2509(96)00092-9.
  • 71. Sundmacher K., Kienle A. (Eds.), 2003. Reactive distillation. Status and Future Directions. 1st edition, Wiley-VCH, Weinheim.
  • 72. Takeuchi T., Noguchi S., Morimoto H., Tobishima S.-I., 2010. Carbonate-modified siloxanes as solvents of electrolyte solutions for rechargeable lithium cells. J. Power Sources, 195, 580–587. DOI: 10.1016/j.jpowsour.2009.07.042.
  • 73. Talwalkar S., Mankar S., Katariya A., Aghalayam P., Ivanova M., Sundmacher K., Mahajani S., 2007. Selectivity engineering with reactive distillation for dimerization of C4 olefins: experimental and theoretical studies. Ind. Eng. Chem. Res., 46, 3024–3034. DOI: 10.1021/ie060860+.
  • 74. Taylor R., Krishna R., 2000. Modelling reactive distillation. Chem. Eng. Sci., 55, 5183–5229. DOI: 10.1016/S0009-2509(00)00120-2.
  • 75. Thotla S., Agarwal V., Mahajani S.M., 2007. Aldol condensation of acetone with reactive distillation using water as a selectivity enhancer. Ind. Eng. Chem. Res., 46, 8371–8379. DOI: 10.1021/ie061658+.
  • 76. Thotla S., Mahajani S.M., 2009. Conceptual design of reactive distillation for selectivity improvement in multiple reactant systems. Chem. Eng. Res. Des., 87, 61–82. DOI: 10.1016/j.cherd.2008.07.003.
  • 77. Urselmann M., Barkmann S., Sand G., Engell S., 2011. A memetic algorithm for global optimisation in chemical process synthesis problems. IEEE Trans. Evol. Comput., 15, 659–683. DOI: 10.1109/TEVC.2011.2150753.
  • 78. van Gerven T., Stankiewicz A., 2009. Structure, energy, synergy, time—the fundamentals of process intensification. Ind. Eng. Chem. Res., 48, 2465–2474. DOI: 10.1021/ie801501y.
  • 79. Wei H.-Y., Rokhmah A., Handogo R., Chien I.-L., 2011. Design and control of reactive-distillation process for the production of diethyl carbonate via two consecutive transesterification reactions. J. Process Control, 21, 1193–1207. DOI: 10.1016/j.jprocont.2011.06.006.
  • 80. Zadeh L., 1963. Optimality and non-scalar-valued performance criteria. IEEE Trans. Automat. Contr., 8, 59–60. DOI: 10.1109/TAC.1963.1105511.
  • 81. Zhang X., Zuo J., Jian C., 2010. Experimental isobaric vapour-liquid equilibrium for binary systems of ethyl methyl carbonate + methanol, + ethanol, + dimethyl carbonate, or + diethyl carbonate at 101.3 kPa. J. Chem. Eng. Data, 55, 4896–4902. DOI: 10.1021/je100494z.
  • 82. Zielinska I.N., Warmuzinski K., Richter J., 2006. Zeolite and other heterogeneous catalysts for the transesterification reaction of dimethyl carbonate with ethanol. Catal. Today, 114, 226–230. DOI: 10.1016/j.cattod.2006.01.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a2593e1-4b36-4109-aaf5-7847a809923f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.