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Abstract. In this article an upscaling model is presented for complex networks with highly
clustered regions exchanging/trading quantities of interest at both, microscale and macroscale
level. Such an intricate system is approximated by a partitioned open map in R2 or R3. The
behavior of the quantities is modeled as flowing in the map constructed and thus it is subject
to be described using partial differential equations. We follow this approach using the Darcy
Porous Media, saturated fluid flow model in mixed variational formulation.
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1. INTRODUCTION

A highly clustered network, is a graph such that its clustering coefficient is close to
one. The clustering coefficient [5] of a vertex v in a graph is defined as the number of
triangles connected to v divided by the number of triples where v is incident on two
edges (triples “centered” at v). Highly clustered regions within a network are identified
as communities. This work focus its attention on networks having a large number of
nodes and few communities where all the agents of the graph are exchanging some
quantities of interest. In this scenario, it can be observed that the communities are
also trading the same quantities, but at a different “scale”. A natural example is the
trade of goods and services amongst members of a nation and the exchange between
nations; other real world systems resembling these characteristics can be found in
biotechnology [13], social and economic networks [9], the Internet [5, 15], etc. The
aim of this article is to provide an overall description of how these quantities are
exchanged at the macroscale level. Such necessity has already been stated implicitly in
[15] according to the quote: “. . . what makes these networks complex is that they are
generally so huge that it is impossible to understand or predict their overall behavior
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by looking into the behavior of individual nodes or links. . . ”. On the other hand,
a highly descriptive model becomes impractical for complex networks because of the
elevated computational costs, numerical instability and low quality solutions introduced
by large-scale computations.

The relationship between PDE and graphs has been subject of study in recent
years. Most of the work has been done to provide the basic definitions of the domain
associated with the graph and the strong differential operators defined by the PDE
at hand, see [14] for a global survey on the field. Authors commonly choose the
1-D simplicial complex given by an embedding in RN of the studied graph, define
strong operators in the edges and matching conditions on the vertices, together with
appropriate function spaces. The mathematical approach is essentially classic and
the technique heavily relies on eigenfunction-eigenvalue expansion methods and/or
maximum-minimum principles. The results depend crucially on the geometry of the
embedding however, it is not clear how to make such a choice; as an example of this
treatment see [6], for a broad exposition see [1]. Seeking to gain independence from
this limitation another approach consists in defining discrete difference operators,
mimicking the properties of the PDE operators. Again, the subsequent mathematical
treatment depends on eigenvector-eigenvalue methods and their properties (see [3]
for a deep discussion), followed by the construction of Green’s functions, see [4] as
an example. Yet an intermediate approach addresses time-evolution problems using
discrete models for space, as imposed by the graph itself, and continuous evolution
in time; under the hypothesis that the underlying combinatorial structure of the
graph remains stationary, see [4] for this point of view. In contrast with the previous
achievements the present work preserves the continuous definitions for the operators
in the PDE and adapts the domain associated with the graph allowing the weak
variational formulation. In that sense this article provides a dual approach to the
previous results, however our central goal is to attain upscaling criteria for highly
complex networks which is a strong necessity as previously discussed. Next, we describe
the model introduced in this paper.

The set of regions in the network constitute an “upscaled graph” which is our
object of interest and, only the combinatorial structure of this upscaled network
will be considered in the PDE system. Each clustered region will be modeled by an
open bounded, simply connected set in RN where every point represents an individ-
ual/molecule. In order to approximate the clustering, it is assumed that every point
will interact with every element in a small neighborhood, i.e. we “homogenize” or
“average” the combinatorial structure at the microscale level. Following this concept if
two communities exchange the quantities in question then, the sets representing them
will share a non-negligible boundary. Moreover, according to [15] the highly clustered
regions are the ideal medium for rapid communication between the nodes. Therefore,
we propose that the studied exchange can be realized as a fluid flow phenomenon in
the modeling open set; for simplicity we adopt the stationary, saturated, Darcy Flow
model (1.1) to describe it within a region, i.e.

au + ∇p+ g = 0, (1.1a)
∇ · u− F = 0 in Ω. (1.1b)
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Here, a is a positive coefficient describing the resistance of the medium to the flow.
It must synthesize a measure of clustering in the region and a resistance to the
flow within it e.g., fees and/or taxes slowing down the exchange of goods and services
in a nation state, paradigms impeding to permeate new ideas in a social network
[9], band width limiting the diffusion of information through the Internet [15], etc.
Additionally, coupling conditions will be introduced to describe the trade between
communities, as well as boundary conditions for the network’s overall behavior. This
is a PDE problem defined on a domain associated to an upscaled network, however in
order to model successfully the exchange of two quantities simultaneously, the available
tools of analysis [10] demand the underlying graph to be bipartite; this additional
hypothesis will be necessary and included in Section 4.

The paper is organized as follows. In Section 2 we list the results and concepts
needed for the exposition. Section 3 defines the types of domain to be associated to
the graph and proves their existence. Section 4 introduces the PDE model together
with the necessary geometric associated notions, it also shows the formulation of the
problem, proves its well-posedness and recovers the strong form. Finally, Section 5
presents the final discussion, and future work.

2. PRELIMINARIES FROM GRAPH THEORY AND PDE

2.1. PRELIMINARIES FROM GRAPH THEORY

We begin this section with the basic, necessary definitions from graph theory [2].
Definition 2.1. Let G = (V,E) be a graph.
(i) The degree of a vertex v is the number of edges that have an endpoint at v.
(ii) A walk in G from vertex v0 to vertex vj is an alternating sequence

〈v0, e1, v1, e2, . . . , vn−1, en, vn〉,

of vertices and edges such that the endpoints of the edge ei are vi−1 and vi for
all i = 1, 2, . . . , n.

(iii) A path is a walk with no repeated edges and no repeated vertices, except possibly
the initial and final vertices.

(iv) A walk or path is trivial if it has only one vertex and no edges.
(v) A cycle is a non-trivial closed path, i.e. it starts and ends on the same vertex.
Definition 2.2. A self-loop is an edge that joins a single vertex with itself. Amulti-edge
is a collection of two or more edges joining identical vertices. A simple graph has
neither self-loops nor multi-edges.
Definition 2.3.
(i) A graph is connected if for every pair of vertices u and v there is a walk from u

to v.
(ii) An edge e is a bridge, if the graph G− e is not connected.
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Definition 2.4. A graph with no cycles is a forest, if additionally the graph is
connected it is said to be a tree. In a tree, a vertex of degree one is said to be a leaf.

The following is a well-known result about trees [2].

Proposition 2.5. A tree with at least one edge has at least two leaves.

Definition 2.6. A bipartite graph is a graph whose vertex set V can be partitioned
in two subsets U,W such that each edge of G has one endpoint in U and one endpoint
in W . The pair U,W is called a (vertex) bipartition of G, and U and W are called
the bipartition subsets.

Next, we recall several definitions about planar graphs [2].

Definition 2.7.

(i) A graph is said to be embeddable in the plane, or planar, if it can be drawn in
the plane so that its edges intersect only at their ends.

(ii) A planar embedding of a graph will be referred to as a plane graph.
(iii) A plane graphG partitions the rest of the plane into a number of arcwise-connected

open sets. These sets are said to be the faces fo G.
(iv) We say that a vertex v of a plane graph G is an outer vertex, if it belongs to the

boundary of the outer face of G.

Definition 2.8. Let G be a plane graph.

(i) The dual graph G∗ is defined as follows. Corresponding to each face f of G there
is a vertex f∗ of G∗ and corresponding to each edge e of G there is an edge e∗ of
G∗. Two vertices f∗ and g∗ are joined by the edge e∗ in G∗ if and only if their
corresponding faces f and g are separated by the edge e in G.

(ii) The plane dual of the plane graph G is a natural embedding of G∗ in the plane.
It is obtained by placing a vertex f∗ in the corresponding face f of G, and then
drawing an edge e∗ in such a way that it crosses the corresponding edge e of G
exactly once and crosses no other edge of G. We refer to such a drawing as plane
dual of the plane graph G.

Definition 2.9. A curve in R2 or R3 is the continuous image of a closed interval, we
say that a curve is simple if it does not intersect itself.

We close this section recalling two well-known results [2, 16].

Theorem 2.10. A plane graph G is connected if and only if it is isomorphic to its
double dual G∗∗.

Theorem 2.11. Every finite graph is embeddable in R3.
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2.2. PRELIMINARIES FROM PDE

We start this section introducing the general notation. In the present work vectors are
denoted by boldface letters as are vector-valued functions and corresponding function
spaces. The symbols ∇ and ∇· represent the gradient and divergence operators,
respectively. The dimension is indicated by N which will be equal to 2 or 3 depending
on the context. Given a function f : RN → R, then

∫
M f dS denotes the integral on

the N − 1 dimensional manifoldM⊆ RN . Analogously,
∫
A
f dx stands for the integral

in the set A ⊆ RN ; whenever the context is clear we simply write
∫
A
f . The symbol

ν̂ denotes the outwards normal vector on the boundary of a given domain O ⊆ RN .
Given an open set M of RN , the symbols ‖ · ‖0,M , ‖ · ‖1,M , ‖ · ‖1/2,∂M , ‖ · ‖−1/2,∂M
and ‖ · ‖Hdiv(M) denote the L2(M), H1(M), H1/2(∂M), H−1/2(∂M) and Hdiv(M)
norms, respectively, while |M | represents the Lebesgue measure of M in R2 or R3

depending on the context.
Next, we present the general abstract problem to be studied in this article. Let

X and Y be Hilbert spaces and let A : X → X′, B : X → Y′ and C : Y → Y′ be
continuous linear operators, we are to study the following problem:

Find a pair (x,y) ∈ X×Y : Ax + B′y = F1 in X′,
−Bx + Cy = F2 in Y′.

(2.1)

Here F1 ∈ X′ and F2 ∈ Y′. Several variations of systems such as the above have been
extensively studied, we present below a well-known result [7] to be used in this work.

Theorem 2.12. Assume that the linear operators A : X → X′, B : X → Y′,
C : Y→ Y′ are continuous and

(i) A is non-negative and X-coercive on ker(B).
(ii) B satisfies the inf-sup condition

inf
y∈Y

sup
x∈X

|Bx(y)|
‖x‖X ‖y‖Y

> 0 . (2.2)

(iii) C is non-negative symmetric.

Then, for every F1 ∈ X′ and F2 ∈ Y′ the Problem (2.1) has a unique solution in
(x,y) ∈ X×Y, which satisfies the estimate

‖x‖X + ‖y‖Y ≤ c (‖F1‖X′ + ‖F2‖Y′). (2.3)

3. THE GRAPH DOMAIN

This section is aimed to the construction of a particular topological domain for a given
plane graph. The domain must be suitable to set a PDE problem. To this end, we
introduce two paramount definitions of domains associated to graphs depicted in
Figure 1.
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(a) Downscaling Map

2ϵ

(b) Tubular ε-Map

Fig. 1. Figure (a) depicts a downscaling map example for a given plane graph represented
in dotted line. Figure (b) depicts a tubular map example for the same given plane graph.

Definition 3.1. Let G = (V,E) be a connected graph embedded in either R2 or R3

such that its edges are simple curves. Denote by ṽ, ẽ the points and lines representing
the vertices and edges of G and G̃ def= (

⋃{ṽ : v ∈ V },⋃{ẽ : e ∈ E}). Let ε > 0 be such
that the collection of balls {B(ṽ, ε) : v ∈ V } is pairwise disjoint. Define

(i) The tubular ε-region
UεG

def= {x : d(x, G̃) < ε}. (3.1)

(ii) For each edge e ∈ E choose a smooth simple curve e′, approximating ẽ. Denote
by `e a secant line (or secant plane) through the midpoint of e′ and let Ce be the
connected component of UεG ∩ `e containing such midpoint.

(iii) Let {Ce : e ∈ E} be as defined above. For each v ∈ V and w adjacent to v, let
Uεv,w be the tubular ε-region corresponding to the induced subgraph Gv,w

def=(
{v, w}, vw

)
. The set Cvw divides Uεv,w into two open regions, one containing ṽ

and one containing w̃ denoted by H(v, w) and H(w, v), respectively. Define the
starred region of v by

Uεv
def=

⋃

w∈V : vw∈E
H(v, w). (3.2)

(iv) The collection {Uεv : v ∈ V } is said to be a tubular ε-map, or simply a tubular
map, of the graph G, see Figure 1 (b).

Now, we introduce the concept of downscaling map, see Figure 1 (a).

Definition 3.2. Let G = (V,E) be a plane connected graph, we will say that
a downscaling map of G is a collection of bounded open sets {Ov : v ∈ V } called
regions, such that
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(i) v ∈ Ov for all v ∈ V .
(ii) If v 6= w, then Ov ∩ Ow = ∅.
(iii) Ov is simply connected for all v ∈ V .
(iv) The set O defined by

O def= int
(

cl
⋃

v ∈V
Ov
)
, (3.3)

is simply connected. We define O as the domain of the downscaling map.
(v) Two elements of the collection share non-negligible boundary if and only if the

vertices they contain are connected in the graph, i.e. |∂Ov ∩ ∂Ow| > 0 if and only
if vw ∈ E.

(vi) If v is an outer vertex, then |∂Ov ∩ ∂O| > 0.
Finally, we will say that the regularity of the map is given by the lowest degree of
regularity of its elements.
Remark 3.3. Notice the following
(i) A tubular map satisfies all the conditions of a downscaling map, except possibly

for the global simply connectedness condition (Definition 3.2 (iv)).
(ii) A tubular map of a plane graph defines a downscaling map if and only if the

graph is a tree.
The next two results are central in proving the existence of a downscaling map for

a simple, plane, connected graph. The intuitive idea and technique are depicted in
Figure 2 (b).
Lemma 3.4. Let G = (V,E) be a connected, simple, plane graph such that no bridges
are in the boundary of its outer face. Then, there exists a downscaling map for G.
Moreover, this existence can be attained for any chosen level of regularity.
Proof. If G has no edges, then it must be a single vertex v, thus an open ball centered
at v will satisfy the definition of downscaling map. We will henceforth assume that G
has at least one edge.

Let G∗ be the plane dual graph of G drawn with disjoint simple curves as edges. The
regions defined by the faces f∗ of G∗ are the natural candidate to define a downscaling
map of G, however they fail because of two reasons. On one hand, according to
Theorem 2.10 we know that the double dual G∗∗ is isomorphic to G. In particular,
the outer face of G∗ must contain a vertex of the plane graph G. On the other hand,
given a face f∗ of the plane dual containing an outer vertex v, it would not necessarily
hold that |∂f∗ ∩ ∂f∗0 | > 0, where f∗0 is the outer face of G∗, as demands the condition
(vi) in Definition 3.2.

We overcome the first deficiency as follows, let v0 be the unique vertex in G
contained in the outer face f∗0 of G∗ and let C be the cycle in G bounding its outer
face f0. Clearly v0 belongs to C, now let ε > 0 be such that the tubular ε-region of
the induced graph C − v0 is completely contained in (f∗0 )c. Define the region

O0
def= f∗0 ∩

⋃

x∈ (f0)c

B(x, ε).
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Since f0 is the outer face, it is clear that f c0 and
⋃
x∈ (f0)c B(x, ε) is simply connected.

Therefore O0 is open bounded, simply connected and it contains v0. For the second
deficiency, let x0 be the point representing the outer face f0 in the plane dual G∗. Now
let δ > 0 be such that clB(x0, δ) ⊂ f0, then the collection

{f∗ − clB(x0, δ) : f∗ face of G∗} ∪ {O0 − clB(x0, δ)},

constitutes a downscaling map for the graph G.
Finally, since the smooth curves are dense in the plane, it is clear that the boundaries

of the elements of this downscaling map can be continuously deformed, to define a new
downscaling map with any required level of regularity.

(a) Starting Graph G (b) Dual Graph of H = G(V,E − F )

Fig. 2. Figure (a) depicts a starting graph G and its set of outer bridges F , it also shows in
dashed line the tree H1 removed from G, as in the proof of Theorem 3.6. Figure (b) depicts
the construction seen in Lemma 3.4 for the graph H depicted in dotted line. The construction
of the domain O0 and the removal of the ball B(x0, δ) are depicted in dashed dotted line.

Proposition 3.5. Let G be a connected, simple, plane graph, let F be the set of
bridges in the outer face of G, and let H1, . . . ,Hk be the connected components of
the graph defined by removing the edges in F . Let G̃ be the graph whose vertex set is
{v1, . . . , vk}, where vi is connected to vj if and only if Hi is connected to Hj by an
edge in F . Then, G̃ is a tree.

Proof. If G̃ contains a cycle, the removal of one edge in such cycle does not disconnect G̃.
Hence such edge is not a bridge contradicting the definition of F .

Finally, we present the main result of this section.

Theorem 3.6. Let G = (V,E) be a connected, simple, plane graph. Then, there exists
a downscaling map with smooth boundaries for G.
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Proof. First, if G has no cycles, then it is a tree and its tubular map constitutes
a downscaling map. Hence, from now on we assume that G has at least one cycle.

Let H1, . . . ,Hk be the components and G̃ be its associated graph as defined in
Proposition 3.5. We will proceed by induction over k. If k = 1, then Lemma 3.4 provides
the required downscaling map. If k > 1, then renumbering the components if necessary,
suppose that Hk is such that vk in G̃ is a leaf. Let Λ be a downscaling map with smooth
boundaries for Hk and letM be its domain. Analogously, let Θ be a downscaling map
with smooth boundaries for the graph such that includes H1, . . . ,Hk−1 together with
every bridge connecting these components and let O be its domain. By deforming
their boundaries, it can be additionally assumed that d(O,M) > 0, while preserving
the smoothness of their boundaries.

Let v and u be the vertices such that vu is the unique bridge connecting Hk with
some component Hi with 1 ≤ i < k. Clearly v ∈ Hk and u ∈ Hi. Denote by Ou and
Mv the regions of Θ and Λ containing u and v, respectively. Consider the graph Ĝ
consisting of the vertices u, v and the edge uv. Take two points p and q in the interior
of the one dimensional manifolds ∂O ∩ ∂Ou and ∂M∩ ∂Mv, respectively. Choose
a simple curve C connecting u and v, which intersects ∂O and ∂M at the unique
points p, q and such that d(C,O′) and d(C,M′) are positive; where O′ def= O−Ov and
M′ def= M−Mv. Choose ε > 0 strictly less than min{d(C,O′), d(C,M′)} and such
that if G denotes the ε-map of Ĝ, then it verifies that G ∩ O ⊂ Ou and G ∩M ⊂Mu.
Redefine Ou,Mv in order to include the regions in the tubular ε-map G, corresponding
to u and v, respectively. If necessary, deform the boundaries of Ou andMv to attain
the required smoothness and denote the outcome by Ou and Mv, respectively. The
collection Λ−{Mv}, Θ−{Ou} together with {Ou} and {Mv} constitutes a downscaling
map for G with the required regularity.

4. THE DOWNSCALED BIPARTITE MODEL

4.1. GEOMETRIC SETTING AND MODELING FUNCTION SPACES

In this section we give the geometric setting for the variational formulation of the
problem.

Definition 4.1. Let Ω be a connected bounded region with smooth boundary,
let G = {K : K ∈ G} be a bipartite map and denote by G1 = {L : L ∈ G1},
G2 = {M : M ∈ G2} the bipartition, or bi-coloring, of the map.

(i) For each region K ∈ G denote by ν̂ the outer normal vector to its boundary ∂K.
(ii) For each region K ∈ G denote by n̂ : ∂K → RN the “normal” vector by

n̂(~x) def=





ν̂(~x), K ∈ G1,

−ν̂(~x), K ∈ G2 and ~x ∈ ∂K ∩ Ω ,

ν̂(~x), K ∈ G2 and ~x ∈ ∂K ∩ ∂Ω .

(4.1)
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(iii) Define Ω1
def=
⋃
{L : L ∈ G1}, Ω2

def=
⋃
{M : M ∈ G2}.

(iv) Define Γ def=
⋃
{∂K : K ∈ G} − ∂Ω.

(v) Define

E def=
⋃
{∂L ∩ ∂M : L ∈ G1, M ∈ G2}

= {σ : σ is the interface of two regions of different type}
= {σ : σ defines an edge in the graph G of the map G}.

(4.2)

Remark 4.2. Notice that
(i) simple connectedness upon the domain is not required in order to include the

tubular map,
(ii) in agreement with the previous section notice that a bipartite map will always be

induced by a bipartite simple graph.
In order to successfully associate a well-posed problem we endow Problem (1.1) with

boundary conditions (4.3g), (4.3h), together with the exchange interface conditions of
normal flux balance (4.3f) and normal stress balance (4.3f). This gives the following
strong problem

au1 + ∇p1 + g = 0, (4.3a)
∇ · u1 = F in Ω1, (4.3b)
au2 + ∇p2 + g = 0, (4.3c)
∇ · u2 = F in Ω2, (4.3d)

u1 · n̂− u2 · n̂ = β p2 + fn̂, (4.3e)
p2 − p1 = fΣ on Γ, (4.3f)
p1 = 0 on ∂Ω1 ∩ ∂Ω, (4.3g)

u2 · n̂ = 0 on ∂Ω2 ∩ ∂Ω. (4.3h)
Hypothesis 4.3. It will be assumed that the storage exchange and the friction
coefficients, β : Γ → [0,∞), a : Ω → (0,∞), respectively, verify that β ∈ L∞(Γ),
‖β 1Γ‖L1(Γ) > 0 and a ∈ L∞(Ω), ‖ 1

a‖L∞(Ω) > 0.
In order to introduce the modeling spaces used in the formulation we first notice

that {L : L ∈ G1} and {M : M ∈ G2} are the simply connected components of Ω1
and Ω2, respectively. Then,

Hdiv(Ω1) =
⊕

L∈G1

Hdiv(L), H1(Ω2) =
⊕

M ∈G2

H1(M).

The following space is introduced in order to couple adequately, the action of the
pressure traces in the variational formulation

E(Ω2) def=
{
q ∈ H1(Ω2) : q1∂M∩∂L ∈ H1/2(∂L) for all (L,M) ∈ G1 × G2

}

=
{
q ∈ H1(Ω2) : q1Γ ∈ H1/2(Γ)

}
.

(4.4)
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We endow E(Ω2) with the H1(Ω2) inner product. It is direct to see that E(Ω2) is
a closed subspace of H1(Ω2) and consequently a Hilbert space. Now define

V(Ω2) def=
{

v ∈ L2(Ω2) : v2 = ∇q2 for some q2 ∈ E(Ω2)
}

= ∇(E(Ω2)), (4.5)

endowed with the L2(Ω2) inner product. Next, we show a necessary result.

Lemma 4.4. Let E(Ω2) and V(Ω2) be as defined in (4.4), (4.5), respectively, and
define

E0(Ω2) def=
{
q2 ∈ E(Ω2) :

∫

Ω2

q2 = 0
}
. (4.6)

Then,

(i) there exists a constant C > 0 depending only on the domain Ω2 such that

‖r2‖1,Ω2 ≤ C‖∇r2‖0,Ω2 for all r2 ∈ H, (4.7)

(ii) the space V(Ω2) is Hilbert.

Proof. (i) Clearly E0(Ω2) is closed and because of the matching property of traces for
elements of E(Ω2) the application r2 7→ ‖∇r2‖0,Ω2 is a norm in E0(Ω2). Due to the
Rellich-Kondrachov Theorem this norm is equivalent to the standard one in E0(Ω2),
i.e. there exists C > 0 depending only on the domain Ω2 satisfying the statement
(4.7).

(ii) Evidently, it is only necessary to check that V(Ω2) is complete. Let {vn2 : n ∈ N}
be a Cauchy sequence in V(Ω2), then there exists a sequence {pn2 : n ∈ N} in E(Ω2) such
that ∇qn2 = vn2 . Therefore, the function rn2

def= qn2 − 1
|Ω2|

∫
Ω2
qn2 belongs to E0(Ω2) and

∇r2 = v2. Due to the previous part it follows that the sequence {rn2 : n ∈ N} ⊆ E0(Ω2)
is Cauchy, consequently it converges to an element r2 ∈ E0(Ω2) ⊆ E(Ω2). Finally,
since the gradient map ∇ from E(Ω2) onto V(Ω2) is continuous, the result follows.

Now we are ready to introduce the functional setting of the problem. Define

X def= Hdiv(Ω1)× E(Ω2), (4.8a)

Y def= V(Ω2)× L2(Ω1), (4.8b)

endowed with their natural inner product and norms

∥∥[v1, q2]
∥∥

X
def=
{
‖v1‖2Hdiv(Ω1) + ‖q2‖2H1(Ω2)

} 1
2 , (4.8c)

∥∥[v2, q1]
∥∥

Y
def=
{
‖v2‖2L2(Ω2) + ‖q1‖2L2(Ω1)

} 1
2 . (4.8d)
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Remark 4.5.
(i) Notice that the definition of spaces gathers the functions of high regularity in

X and the functions of low regularity in Y. This choice is made on one hand
to satisfy the hypotheses of Theorem 2.12 and, on the other hand, to preserve
the remarkable aspect that the underlying modeling spaces X and Y are free of
coupling conditions. This approach will lead to a version of mixed formulation
different from the one presented in [10] and [11], which shares the coupling-free
spaces feature.
In order to avoid heavy notation, in the sequel we adopt the following conventions.

(ii) Let ∆ be an open bounded set, v ∈ Hdiv(∆) and q ∈ H1(∆), then we denote
∫

∂∆

(
v · n̂

)
q dS

def=
〈
v · n̂, q

〉
H−1/2(∂∆),H−1/2(∂∆). (4.9)

(iii) Since Γ =
⋃
σ ∈E σ, we denote

∫

Γ

(v1 · n̂) q2 dS
def=

∑

σ ∈E

∫

σ

(v1 · n̂) q2 dS. (4.10)

4.2. WEAK FORMULATION OF AND WELL-POSEDNESS OF THE PROBLEM

In this section we present a particular mixed-mixed formulation for Problem (4.3).

Find
(
[u1, p2], [u2, p1]

)
∈ X×Y :∫

Ω1

au1 · v1 +
∫

Γ

β p2 q2 dS −
∫

Γ

(u1 · n̂) q2 dS +
∫

Γ

p2 (v1 · n̂) dS

−
∫

Ω1

p1 ∇ · v1 −
∫

Ω2

u2 ·∇q2 =
∫

Ω2

F q2 −
∫

Ω1

g · v1 +
∫

Γ

fΣ (v1 · n̂) dS −
∫

Γ

fn̂ q2 dS,

(4.11a)

∫

Ω1

∇ · u1 q1 +
∫

Ω2

∇p2 · v2 +
∫

Ω2

au2 · v2 =
∫

Ω1

F q1 −
∫

Ω2

g · v2

for all
(
[v1, q2], [v2, q1]

)
∈ X×Y. (4.11b)

Define the operators A : X→ X′, B : X→ Y ′ and C : Y→ Y ′ by

A[v1, q2],
(
[w1, r2]

) def=
∫

Ω1

av1 ·w1 +
∫

Γ

β q2 r2 dS

−
∫

Γ

(v1 · n̂) r2 dS +
∫

Γ

q2 (w1 · n̂) dS,
(4.12a)
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B[v1, q2],
(
[w2, r1]

) def=
∫

Ω1

∇ · v1 r1 +
∫

Ω2

∇q2 ·w2, (4.12b)

C[v2, q1]
(
[w2, r1]

) def=
∫

Ω2

av2 ·w2. (4.12c)

Thus, Problem (4.11) is equivalent to

Find a pair
(
[u2, p1], [u1, p2]

)
∈ X×Y : A[u2, p1] + B′[u1, p2] = F1 in X′,

−B[u2, p1] + C[u1, p2] = F2 in Y′,
(4.13)

where F1 ∈ X′ and F2 ∈ Y′ are the functionals defined by the right hand side of
(4.11a) and (4.11b), respectively.

4.2.1. Inf-sup condition of the operator B and coerciveness of the operator A
on X ∩ ker(B)

Lemma 4.6. The operator B : X → Y′ defined in Equation (4.12b) is continuous
and satisfies the inf-sup condition, i.e. there exists a constant C > 0 depending only
on the map G such that for every [w2, r1] ∈ Y there exists [v1, q2] ∈ X satisfying

B [v1, q2]([w2, r1]) ≥ C
∥∥[v1, q2]

∥∥
X
∥∥[w2, r1]

∥∥
Y . (4.14)

Moreover, the constant C > 0 is independent from [w2, r1].

Proof. It is direct to see that the operator B is continuous. Now fix [w2, r1] ∈ Y, for
each polygon L ∈ G1 let ξL ∈ H1

0 (L) be the unique solution of the local homogeneous
Dirichlet problem

−∇ ·∇ξL = r1 1L in L, ξL = 0 on ∂L. (4.15)

Taking vL
def= ∇ξL due to Poincaré inequality we observe that ‖vL‖Hdiv(L) ≤

CL ‖r11L‖0,L, where CL depends only on the diameter of the simply connected
region L. Therefore, the function v1

def=
∑
L∈G1

vL 1L clearly belongs to Hdiv(Ω1)
and ‖v1‖Hdiv(Ω1) ≤

(
maxL∈G1 CL

)
‖r1‖0,Ω1 .

Let w2 ∈ V(Ω2), by definition there must exist η ∈ E(Ω2) such that ∇η = v2.
Then, q2

def= η − 1
|Ω2|

∫
Ω2
η belongs to the space E0(Ω2) (defined in (4.6)), it satisfies

that ∇r2 = w2 and due to the inequality (4.7), it holds that ‖q2‖1,Ω2 ≤ C ‖v2‖0,Ω2

with C > 0 depending only on the domain Ω2.
Hence, the pair [v1, q2] belongs to X and C

∥∥[v1, q2]
∥∥

X ≤
∥∥[w2, r1]

∥∥
Y for

an adequate constant C > 0 independent from [w2, r1]. Moreover,

B[v1, q2]
(
[w2, r1]

)
=
∥∥[w2, r1]

∥∥2
Y ≥ C

∥∥[v1, q2]
∥∥

X
∥∥[w2, r1]

∥∥
Y .

The inequality above yields the inf-sup condition (4.14).
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Proposition 4.7. The operator A : X → X ′ defined by (4.12a) is X-coercive on
X ∩ ker(B), i.e.

A[v1, q2]
(
[v1, q2]

)
≥ C

∥∥[v1, q2]
∥∥2

X for all [v1, q2] ∈ X ∩ ker(B). (4.16)

Here C > 0 is an adequate constant depending only on the map G and the storage
coefficient β.

Proof. The continuity of the operator A follows applying the Cauchy-Schwartz
inequality on each of its summands and noticing that the boundary terms involved
can be controlled by the norm ‖ · ‖X. For the coerciveness of the operator, let [v1, q2]
be in X ∩ ker(B), then

B[v1, q2]
(
[w2, r1]

)
= 0 for all [w2, r1] ∈ Y. (4.17)

In particular, testing (4.17) with [0, r1] ∈ Y we conclude that ∇ · v1 = 0 since r1 is
an arbitrary element in L2(Ω1). On the other hand, clearly ∇q2 ∈ V(Ω2) and the pair
[∇q2, 0] ∈ Y is eligible for testing (4.17). The test yields ∇q2 = 0, i.e. q2 is constant
inside Ω2. Hence

∫

Γ

β q2
2 =
‖β 1∂Γ‖L1(Γ)

|Ω2|
‖q2‖20,Ω2 =

‖β 1Γ‖L1(Γ)

|Ω2|
‖q21Ω2‖21,Ω2 .

Using the previous observations we get that

A[v1, q2]
(
[v1, q2]

)
=
∫

Ω1

av1 · v1 +
∫

Γ

β q2
2 dS

≥
∥∥∥1
a

∥∥∥
−1

L∞(Ω)
‖v1‖2Hdiv(Ω1) +

‖β 1Γ‖L1(Γ)

|Ω2|
‖q2‖21,Ω2

≥ C
∥∥[v1, q2]

∥∥2
X ,

where C = min
{
‖ 1
a‖−1
L∞(Ω), |Ω2|−1 ‖β 1Γ‖L1(Γ)

}
. This completes the proof.

Theorem 4.8. Problem (4.13) is well-posed and there exist a constant C > 0
depending only on the map G such that

∥∥[u2, p1]
∥∥

X +
∥∥[u1, p2]

∥∥
Y ≤ C (‖F1‖X′ + ‖F2‖Y′).

Proof. The proof is a direct application of Theorem 2.12 as all the required hypotheses
are satisfied.

4.3. RECOVERING THE STRONG PROBLEM

We begin this section with the strong problem that is modeled by the weak variational
Statement (4.11). The process shows mild restrictions on the forcing terms which are
characterized below.
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Theorem 4.9. The solution of the weak variational Problem (4.11) is a strong solution
of Problem (4.3) with the forcing gravitation term g in the equation (4.3a) replaced by
Proj g, which denotes its orthogonal projection onto the space V(Ω2). In particular if
g1Ω2 ∈ V(Ω2) the weak solution is exactly the strong solution.

Proof. First we focus on recovering the constitutive and conservative equations (4.3a),
(4.3b), (4.3d) and (4.3c), on the domains Ω1 and Ω2, respectively.

Choose [0, q1] ∈ Y and test Equation (4.11b) to get
∫

Ω1
∇ · u1 q1 =

∫
Ω1
F q1, for

all q1 ∈ L2(Ω1). This yields the strong conservation Identity (4.3b). Next, choose
[v2, 0] ∈ Y and test Equation (4.11b) to get

∫
Ω2

(∇p2 +au2) ·v2 = −
∫

Ω2
g ·v2. Clearly

∇p2 + au2 ∈ V(Ω2) and the previous equality holds for all v2 ∈ V(Ω2). From here
it follows that ∇p2 + au2 = −Proj g, where Proj g is the orthogonal projection of g
onto V(Ω2). This gives the constitutive Darcy equation (4.3c) with the forcing term
g replaced by its projection Proj g. Now let Φ ∈ [C∞0 (Ω1)]N , then testing Equation
(4.11a) with [Φ, 0] ∈ X we get

∫

Ω1

au1 · Φ−
∫

Ω1

p1 ∇ · Φ = −
∫

Ω1

g · Φ.

The above holds for all Φ ∈ [C∞0 (Ω1)]N , then the Identity (4.3a) follows in the
H−1(Ω1)-sense. Moreover, recalling that u1,g ∈ L2(Ω1), the strong constitutive Darcy
equation (4.3a) also holds in the L2(Ω1)-sense. Now let ϕ ∈ C∞0 (Ω1) and test Equation
(4.11a) with [0, ϕ] ∈ X to get −

∫
Ω2

u2 ·∇ϕ =
∫

Ω2
F ϕ. Since this holds for all smooth

functions, the strong conservative Identity (4.3d) follows.
Next, we focus on the boundary and interface conditions. Take v1 ∈ Hdiv(Ω1),

test (4.3a) with [v1, 0] ∈ X, integrate by parts and get
∫

Ω1

au1 · v1 +
∫

Γ

p2
(
v1 · n̂

)
dS +

∫

Ω1

∇p1 · v1 −
∫

∂Ω1

p1
(
v1 · ν̂

)
dS

= −
∫

Ω1

g · v1 +
∫

Γ

fΣ
(
v1 · n̂

)
dS.

We split the boundary term on ∂Ω1 in two pieces, the interfaces network Γ and the
outer part ∂Ω1 − Γ = ∂Ω1 ∩ ∂Ω and replace ν̂ with n̂ using the relationship given in
Definition 4.1, equation (4.1). Additionally, recalling that Identity (4.3a) is satisfied,
the expression above writes as
∫

Γ

p2
(
v1 · n̂

)
dS −

∫

Γ

p1
(
v1 · ν̂

)
dS −

∫

∂Ω1∩∂Ω

p1
(
v1 · ν̂

)
dS =

∫

Γ

fΣ
(
v1 · n̂

)
dS.

Since the above holds for all v1 ∈ Hdiv(Ω1) and the map v1 7→ v1 · n̂ from Hdiv(Ω1)
onto H−1/2(∂Ω1) is surjective, the normal stress balance condition across the interfaces
(4.3f) and the drained Dirichlet boundary condition (4.3g) follow in the sense ofH1/2(Γ)
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and H1/2(∂Ω1 ∩ ∂Ω), respectively. Finally, taking q2 ∈ H1(Ω2), testing (4.3a) with
[0, q2] ∈ X and integrating by parts we get

∫

Γ

β p2 q2 dS −
∫

Γ

(
u1 · n̂

)
q2 dS +

∫

Ω2

∇ · u2 q2 −
∫

∂Ω2

(
u2 · ν̂

)
q2 dS

=
∫

Ω2

F q2 −
∫

Γ

fn̂ q2 dS.

Again, we split the boundary term on ∂Ω2 in two pieces, the interfaces network Γ and
the outer part ∂Ω2 − Γ = ∂Ω2 ∩ ∂Ω; next replace ν̂ with n̂ using the relationship
given in Definition 4.1, equation (4.1). Since Identity (4.3d) is satisfied, the expression
above reduces to

∫

Γ

β p2 q2 dS −
∫

Γ

(u1 · n̂) q2 dS +
∫

Γ

(u2 · n̂)q2 dS −
∫

∂Ω2∩Ω

(u2 · n̂)q2 dS

= −
∫

Γ

fn̂ q2 dS.

Observing that the above holds for all q2 ∈ E(Ω2), it follows that the normal flux
balance condition across the interfaces (4.3e) and the null normal flux boundary
condition (4.3h) hold, in the sense of H−1/2(Γ) and H−1/2(∂Ω2 ∩ ∂Ω), respectively.
This completes the proof.

Finally, in order to identify which forcing terms can be modeled using this for-
mulation, this section closes characterizing the orthogonal projection onto the spaces
V(Ω2) and V⊥(Ω2).
Lemma 4.10. Let v ∈ L2(Ω2) and let ξ ∈ H1

0 (Ω) ⊆ E(Ω2), η ∈ E0(Ω2) be the unique
solutions of the respective Dirichlet and Neumann problems

−∇ ·∇ξ = −∇ · v in Ω2, ξ = 0 on ∂Ω2, (4.18a)
−∇ ·∇η = 0 in Ω2, ∇η · n̂ = (v−∇ξ) · n̂ on ∂Ω2. (4.18b)

Then, v−∇ξ−∇η is the projection of v onto V⊥(Ω2) and ∇ξ+ ∇η is the projection
of v onto V(Ω2).
Proof. First recall that since C∞0 (Ω2) ⊆ E(Ω2), then

V⊥(Ω) =
{

v ∈ L2(Ω2) : ∇ · v = 0, in Ω2 and v · n̂ = 0 , on ∂Ω2
}
,

i.e. V⊥(Ω2) ⊆ Hdiv(Ω2). Next, observe that since ξ ∈ H1
0 (Ω2), then ∇ξ ∈ L2(Ω2),

and because it is a solution to Problem (4.18a) it follows that ∇ · (v−∇ξ) = 0, i.e.
v−∇ξ ∈ Hdiv(Ω2). Moreover, for any q ∈ H1(Ω2) it holds that

〈
(v−∇ξ) · n̂, q

〉
H−1/2(∂Ω2),H−1/2(∂Ω2) =

∫

Ω2

(v−∇ξ) ·∇q.
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In particular, if q = 1, then
〈
(v−∇ξ) · n̂, 1

〉
H−1/2(∂Ω2),H−1/2(∂Ω2) = 0, i.e. the data

for the Neumann problem (4.18b) satisfy the compatibility condition and the problem
has a unique solution η in E0(Ω2). Now, it is clear that v−∇ξ −∇η ∈ H(Ω2) and
since v− (v−∇ξ −∇η) = ∇ξ + ∇η is orthogonal to H(Ω2), the result follows due
to the characterization of orthogonal projections in Hilbert spaces.

5. CONCLUSIONS AND FINAL DISCUSSION

The present work yields several conclusions as summarized below.
(i) The study of communication in complex networks, as stated in [5, 15], can be

perplexing due to the large number of nodes and links. One of the greatest
achievements of this article is to provide a relatively simple upscaled description
to an otherwise very complicated study. This result sets the foundation to use
well-studied numerical methods such as Finite Elements on Complex Network
Theory.

(ii) The function a(·) presented in the strong form (4.3a), can be used as a scaling tool.
If the volume of a region does not reflect properly the impact that its represented
community has within the network, then a(·) can be scaled in such sub-domain
to counterbalance this deficiency and weigh each region of the map accordingly.

(iii) The method for PDE analysis on graphs presented in this article and the previous
achievements in the literature are dual concepts. The preexisting results rely
on complex definitions for the operators of the PDE and simple definitions for
the domain. This work introduces simple definitions for the PDE operators
and somehow restrictive conditions for the graph. As experience have shown,
complementing dual points of view through a wise interplay between them, are
the key for a very strong mathematical theory. The method for analyzing PDE
on graphs presented here is the gateway for significantly deeper understanding of
the field.

(iv) In the articles [10] and [11], a mixed variational formulation is introduced in
order to model the saturated fluid flow within a fractured porous medium. The
mixed variational formulation presented here is, to the authors’ best knowledge,
unprecedented in the specialized literature of PDE analysis and, it will allow to
treat fractured media with substantially more general geometry than before.

For the limitations of the method we point out the following ones.
(i) There are two particularly important cases of discretization for 3-D polygonal

domains in a bipartite fashion, using tetrahedra as discussed in [12], or using
cubes. For both cases, it is not difficult to prove that a subdivision of the graph
K3,3 is contained in most of the graphs, defined by the “tetrahedral grids” or
the “cubic grids”, associated to a given domain. Therefore, most of the time,
the associated graph is nonplanar and bipartite. Although in these scenarios
the domain for the PDE setting is already defined, the nonplanar structure of
their natural associated graphs suggests that the analysis for bipartite, nonplanar
graphs is an important issue still to be addressed.
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(ii) The variational formulation is dependent upon the domain chosen for the graph at
hand. Thus, the construction of the domain, that best suits the application, will
depend on the context. Nevertheless, this limitation is equivalent to the choice of
embedding for the classic approach presented in [1].

Finally, for further work we highlight the following aspects.

(i) The method of analyzing highly clustered complex networks presented here is
based upon the assumption that, approximating the behavior of a large number of
particles using an open set, introduces an acceptable error when they are highly
clustered. In order to understand the extent of this claim, further work about
the error introduced by this approximation is of central importance. Observe
that the quality of the approximation may very well depend on the nature of the
quantities one is analyzing, which will impact in the PDE model. This aspect will
be explored in future work.

(ii) The Darcy Flow Model is a more general case of the Poisson equation whose
unique differential operator is the Laplacian. Discrete versions of the Laplacian
Operator for graphs are presented in [6,8, 14]. A natural conjecture is that the
discrete Laplacian operator will approximate the continuous version if the number
of nodes is very large. This conjecture will be addressed in future work, because it
may provide the foundation to justify the assumption that, jumping from discrete
to continuous is a reasonable estimate for the global behavior when the number
of nodes is large.

(iii) The formulation introduced divides the domain in two types of regions, namely
Ω1 and Ω2 which is the reason why the main setting of the problem had to be
bipartite. Since every plane map is four colorable, it remains for future work to
develop a formulation addressing up to four types of regions.
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