PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Cr(VI) using a novel adsorbent modification. Ultrasonic method with apricot kernel shells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Raw apricot kernel shells (AKS) and ultrasound-modified apricot kernel shells were used as adsorbents for the removal of Cr(VI) from aqueous solutions. For raw and modified AKS, the experimental data well fitted to the Langmuir isotherm and adsorption kinetics was suited to pseudo-second order kinetic model indicating chemisorption as the rate-limiting step. For raw and modified AKS, maximum adsorption capacities obtained from the Langmuir adsorption model were 6.5 mg/g and 9.9 mg/g, respectively. Maximum Cr(VI) adsorption was obtained at a pH 2 and optimum stirring speed was determined as 250 rpm. After ultrasound modification, an increase for Cr(VI) adsorption was observed. Raw AKS as low-cost natural biomaterial can be preferred for the removal of Cr(VI) when compared to other adsorbents. Ultrasonic modification can be used to improve the efficiency of Cr(VI) removal.
Rocznik
Strony
79--93
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
autor
  • Department of Environmental Engineering, Nevsehir Hacı Bektas Veli University, 50300 Nevsehir, Turkey
autor
  • Department of Environmental Engineering, Nevsehir Hacı Bektas Veli University, 50300 Nevsehir, Turkey
Bibliografia
  • [1] OZSOY H.D., Investigation of the chromium ions removal from aqueous solutions using palm sheat and sesame seed capsules as adsorbent, PhD, Institute of Science, University of Mersin, TR, 2007 (in Turkish).
  • [2] FU F., WANG Q., Removal of heavy metal ions from wastewaters. A review, J. Environ. Manage., 2011, 92, 407–418.
  • [3] International Programme on Chemical Safety, Environmental Health Criteria 61. Chromium, WHO, Geneva 1988, 11.
  • [4] SELVI K., PATTABHI S., KADIRVELU K., Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Biol. Tech., 2001, 80, 87–89.
  • [5] HU Z., LEI L., LI Y., NI Y., Chromium adsorption on high-performance activated carbons from aqueous solution, Sep. Purfif.Tech., 2003, 31, 13–18.
  • [6] BABEL S., KURNIAWAN T.A., Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, 2004, 54, 951–967.
  • [7] KHEZAMI L., CAPART R., Removal of chromium(VI) from aqueous solution by activated carbons. Kinetic and equilibrium studies, J. Hazard. Mater., 2005, B123, 223–231.
  • [8] KALIPCI E., SAHINKAYA S., DORTKOL M., ARAS S., Decolorization of basic textile dyes using a novel adsorbent modification method. Ultrasonic-acid modification, Int. J. Environ. Res., 2016, 10 (1), 31–40.
  • [9] KALIPCI E., Removal of methylene blue from aqueous solution by natural olive pomace modified with ultrasounds and acid, Environ. Prot. Eng., 2016, 42 (3), 5–17.
  • [10] KALIPCI E., SAHINKAYA S., ARAS S., OZTURK M., Chromium(VI) adsorption with ultrasonically activated carbon, NEU Fen Bilimleri Enstitüsü Dergisi, 2013, 2 (1), 20–25 (in Turkish).
  • [11] BREITBACH M., BATHEN D., Influence of ultrasound on adsorption processes, Ultrason. Sonochem., 2001, 8, 277–283.
  • [12] AYAR E., Removal of phosphorus by adsorption onto bentonite, Institute of Science, Suleyman Demirel Üniversitesi, TR, 2009 (in Turkish).
  • [13] PEZOTI O., CAZETTA A.L., BEDIN K.C., SOUZA L.S., MARTINS A.C., SILVA T.L., JÚNIOR O.O.S., VISENTAINER J.V., ALMEIDA V.C., NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal. Kinetic, isotherm and thermodynamic studies, Chem. Eng. J., 2016, 288, 778–788.
  • [14] CRINI G., BADOT P.M., Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Prog. Polym. Sci., 2008, 33 (4), 399–447.
  • [15] AKSU Z., Application of biosorption for the removal of organic pollutants. A review, Proc. Biochem., 2008, 40, 997–1026.
  • [16] GUPTA S.S., BHATTACHARYYA K.G., Kinetics of adsorption of metal ions on inorganic materials. A review, Adv. Coll. Int. Sci., 2011, 162, 39–58.
  • [17] AHMED M.J., Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. Review, J. Environ. Chem. Eng., 2016, 4 (1), 89–99.
  • [18] HAMADI N.K., CHEN X.D., FARID M.M., LU M.G.Q., Adsorption kinetics of the removal of chromium( VI) from aqueous solution by adsorbents derived from used tyres and sawdust, Chem. Eng. J., 2001, 84, 95–105.
  • [19] MEENA A.K., MISHRA G.K., RAI P.K., RAJAGOPAL C., NAGAR P.N., Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent, J. Hazard. Mater., 2005, 122, 161–170.
  • [20] ZHAO N., WEI N., LI J., QIAO Z., CUI J., HE F., Surface properties of chemically modified activated carbons for adsorption rate of Cr(VI), Chem. Eng. J., 2005, 115, 133–138.
  • [21] BEGUM K.M.M.S., SUGASHINI S., Preparation of activated carbon from carbonized rice husk by ozone activation for Cr(VI) removal, New Carbon Mat., 2015, 30 (3), 252–261.
  • [22] LANGMUIR I., The adsorption of gases on plane surfaces of glass, mica and platinum, J. Amer. Chem. Soc., 1918, 40, 1361–1403.
  • [23] HALL K.R., EGLETON L.C., ACRIVOS A., VEMEULEN T., Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions, Ind. Eng. Chem. Fund., 1966, 5, 212–223.
  • [24] SPARKS D.L., Environmental Soil Chemistry, Academic Press, Cambridge 2002.
  • [25] KENNEDY L.J., VIJAYA J.J., SEKARAN G., KAYALVIZHI K., Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon, J. Hazard. Mater., 2007, 149, 134–143.
  • [26] AMUDA O.S., GIWA A.A., BELLO I.A., Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, Biochem. Eng. J., 2007, 36, 174–181.
  • [27] MOHAN D., SINGH K.P., SINGH V.K., Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth, J. Hazard. Mater., 2006, B135, 280–295.
  • [28] FOO K.Y., HAMEED B.H., Recent developments in the preparation and regeneration of activated carbons by microwaves, Adv. Coll. Int. Sci., 2009, 149, 19–27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a236f2e-1a0a-4ec7-8f00-f53dde154293
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.