PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tensile, impact, and mode-I behaviour of glass fiber-reinforced polymer composite modified by graphene nanoplatelets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports the tensile, impact, and mode-I behaviour of glass fiber-reinforced polymer (GFRP) composites modified by incorporating graphene nanoplatelets (GnPs) on the fiber surface and in the epoxy matrix. The composites were fabricated through a hand lay-up technique followed by hot compression moulding. The homogeneous dispersion of GnPs in the matrix was achieved by mechanical mixing followed by ultra-sonication. The glass fibers were coated with varying quantities of GnPs (GnPs in epoxy) by the dip-coating technique. The composites containing 1 wt% GnPs on both the fiber surface and the matrix (0.5 wt% deposited on the fiber and 0.5 wt% dispersed in epoxy) enhanced the impact resistance by 45% and tensile strength by 114% over the pristine composite. The mode I fracture toughness of the composite containing 1 wt% GnPs on both the fiber surface and the matrix was increased by 55% with the crack parallel to the fiber direction and 64% in a crack perpendicular to the fiber direction over the pristine composite. The presence of GnPs at the fiber/matrix interface toughened the fiber surface by preventing the matrix from cracking.
Rocznik
Strony
439--453
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, College of Engineering, Anna University, Guindy Campus, Chennai 600 025, India
  • Department of Mechanical Engineering, College of Engineering, Anna University, Guindy Campus, Chennai 600 025, India
  • MPR Technologies, Johannesburg, South Africa
  • Department of Mechanical Engineering, The University of Tokyo, Hongo, Bunkyo-ku, 113-8656, Japan
Bibliografia
  • [1] Liu Q, Lin Y, Zong Z, Sun G, Li Q. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Compos Struct. 2013;97:231–8.
  • [2] Sathishkumar T, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites-a review. J Reinf Plast Compos. 2014;33:1258–75.
  • [3] Karger-Kocsis J, Mahmood H, Pegoretti A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci. 2015;73:1–43.
  • [4] Lawal AT. Graphene-based nano composites and their applications. A review. Biosens Bioelectron. 2019;141:111384.
  • [5] Mohan VB, Lau KT, Hui D, et al. Graphene-based materials and their composites: a review on production, applications and product limitations. Compos Part B Eng. 2018;142:200–20.
  • [6] Prusty RK, Ghosh SK, Rathore DK, Ray BC. Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in situ elevated temperature environments: an emphasis on graphene oxide content. Compos Part A Appl Sci Manuf. 2017;95:40–53.
  • [7] Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H. Modifying glass fibers with graphene oxide: towards high-performance polymer composites. Compos Sci Technol. 2014;97:41–5.
  • [8] Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Des. 2015;66:142–9.
  • [9] Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A. Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos Part A Appl Sci Manuf. 2015;70:82–92.
  • [10] Domun N, Kaboglu C, Paton KR, Dear JP, Liu J, Blackman BRK, Liaghat G, Hadavinia H. Ballistic impact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices. Compos Part B Eng. 2019;167:497–506.
  • [11] Domun N, Paton KR, Blackman BRK, Kaboglu C, Vahid S, Zhang T, Dear JP, Kinloch AJ, Hadavinia H. On the extent of fracture toughness transfer from 1D/2D nanomodified epoxy matrices to glass fibre composites. J Mater Sci. 2020;55:4717–33.
  • [12] Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–75.
  • [13] Warrier A, Godara A, Rochez O, Mezzo L, Luizi F, Gorbatikh L, Lomov SV, VanVuure AW, Verpoest I. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Compos Part A Appl Sci Manuf. 2010;41:532–8.
  • [14] Godara A, Gorbatikh L, Kalinka G, Warrier A, Rochez O, Mezzo L, Luizi F, van Vuure AW, Lomov SV, Verpoest I. Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos Sci Technol. 2010;70:1346–52.
  • [15] ASTM (2000) Standard test method for tensile properties of polymer matrix composite materials. ASTM Stand D 3039/D 3039M-00. https ://doi.org/10.1520/D3039 _D3039 M-08.
  • [16] ASTM (2012) Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact. ASTM Stand D7136/D7136M—12. https ://doi.org/10.1520/D7136 _D7136 M-15.
  • [17] ASTM. Standard test method for plane-strain fracture toughness of metallic materials 1. ASTM Stand E. 1997;399–90(90):1–31.
  • [18] Vasudevan A, Senthil Kumaran S, Naresh K, Velmurugan R. Layerwise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography. Int J Crashworthiness. 2019. https ://doi.org/10.1080/13588265.2018.15112 34.
  • [19] Le MT, Huang SC. Thermal and mechanical behavior of hybrid polymer nanocomposite reinforced with graphene nanoplatelets. Materials (Basel). 2015;8:5526–36.
  • [20] Prolongo SG, Jiménez-Suárez A, Moriche R, Ureña A. Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites. Eur Polym J. 2014. https://doi.org/10.1016/j.eurpo lymj.2014.01.019.
  • [21] Seretis GV, Polyzou AK, Manolakos DE, Provatidis CG. Tensile performance of graphene nanoplatelets/glass fabric/epoxy nanocomposite laminae. Procedia Struct Integr. 2018;10:249–56.
  • [22] Seretis GV, Nitodas SF, Mimigianni PD, Kouzilos GN, Manolakos DE, Provatidis CG. On the post-curing of graphene nanoplatelets reinforced hand layup glass fabric/epoxy nanocomposites. Com-pos Part B Eng. 2018;140:133–8.
  • [23] Rokbi M, Osmani H, Benseddiq N, Imad A. On experimental investigation of failure process of woven-fabric composites. Com-pos Sci Technol. 2011;71:1375–84.
  • [24] Fiedler B, Gojny FH, Wichmann MHG, Nolte MCM, Schulte K. Fundamental aspects of nano-reinforced composites. Compos Sci Technol. 2006;66:3115–25.
  • [25] Chandrasekaran S, Seidel C, Schulte K. Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J. 2013;49:3878–88.
  • [26] Hua Y, Li F, Liu Y, Huang GW, Xiao HM, Li YQ, Hu N, Fu SY. Positive synergistic effect of graphene oxide/carbon nano-tube hybrid coating on glass fiber/epoxy interfacial normal bond strength. Compos Sci Technol. 2017;149:294–304.
  • [27] Pegoretti A, Mahmood H, Pedrazzoli D, Kalaitzidou K. Improving fiber/matrix interfacial strength through graphene and graphene-oxide nano platelets. IOP Conf Ser Mater Sci Eng. 2016;139:012004.
  • [28] Yavari F, Rafiee MA, Rafiee J, Yu ZZ, Koratkar N. Dramatic increase in fatigue life in hierarchical graphene composites. ACS Appl Mater Interfaces. 2010;2:2738–43.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a21b3fe-f5b0-49a9-bc33-9cd4b736225e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.