PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of differential code GPS/GLONASS positioning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the essential issues and problems associated with GNSS (Global Navigation Satellite System) code differential positioning simultaneously using observations from at least two independent satellite navigation systems. To this end, two satellite navigation systems were selected: GPS (Global Positioning System, USA) and GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, Russia). The major limitations and methods of their elimination are described, as well as the basic advantages and benefits resulting from the application of the DGNSS (Differential GNSS) positioning method. Theoretical considerations were verified with the post-processed observations gathered during a six-hour measurement. The data from selected reference stations of the ASG-EUPOS (Active Geodetic Network — EUPOS) system located at different distances from the rover site was used. The study showed that the DGNSS positioning method achieves higher accuracy and precision, and improves the stability of coordinate determination in the time domain, compared to positioning which uses only one satellite navigation system. However, it was shown that its navigational application requires further studies, especially for long distances from the reference station.
PL
W artykule przedstawiono zasadnicze zagadnienia i problemy odnoszące się do pozycjonowania opartego na różnicowych pomiarach kodowych GNSS przy równoczesnym wykorzystywaniu sygnałów od co najmniej dwóch niezależnych systemów nawigacji satelitarnej. W tym celu wybrano amerykański GPS oraz rosyjski GLONASS. W artykule opisano najważniejsze ograniczenia oraz metody ich eliminacji, jak również podstawowe zalety i korzyści będące wynikiem stosowania DGNSS (różnicowa wersja GNSS) dla pozycjonowania. Teoretyczne rozważania zostały zweryfikowane metodą opracowania w post-processingu obserwacji zebranych podczas sześciogodzinnej sesji pomiarowej. Do obliczeń użyto danych od wybranych stacji odniesienia ASG EUPOS (aktywna sieć geodezyjna). Badania wykazały, że metoda pozycjonowania DGNSS pozwala osiągnąć wyższą dokładność i precyzję, a także poprawić stabilność wyznaczanych współrzędnych w domenie czasu w porównaniu do metod opartych na wykorzystaniu sygnałów tylko od jednego systemu satelitarnego.
Słowa kluczowe
Rocznik
Tom
Strony
117--132
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Satellite Geodesy and Navigation, University of Warmia and Mazury in Olsztyn, Poland
autor
  • Department of Satellite Geodesy and Navigation, University of Warmia and Mazury in Olsztyn, Poland
  • Department of Air Navigation, Polish Air Force Academy, Dęblin, Poland
Bibliografia
  • [1] Angrisano A., Gaglione S., Gioia C., Performance assessment of GPS/GLONASS single point positioning in an urban environment, ‘Acta Geodaetica et Geophysica’, 2013, 48(2), pp. 149–161.
  • [2] Bakuła M., Network Code DGPS Positioning and Reliable Estimation of Position Accuracy, ‘Survey Review’, 2010, 42 (315), pp. 82–91.
  • [3] Bakuła M., Static Network Code DGPS Positioning vs. Carrier Phase Single Baseline Solutions for Short Observation Time and Medium-Long Distances, ‘Artificial Satellites, Journal of Planetary Geodesy’, 2007, 42, pp.167–183.
  • [4] Bancroft S., An algebraic solution of the GPS equations, ‘IEEE Transactions on Aerospace and Electronic Systems’, 1985, 21(6), pp. 56–59.
  • [5] Bazlov Y. A., Galazin V. F., Kaplan B. L., Maksimov V. G., Rogozin V. P., GLONASS to GPS: a new coordinate transformation, ‘GPS World’, 1999, 10(1), pp. 54–58.
  • [6] BIPM, Circular T No. 309, ISSN 1143-1393, 9 October 2013.
  • [7] Boucher C., Altamimi Z., ITRS, PZ-90 and WGS 84: current realizations and the related transformation parameters, ‘Journal of Geodesy’, 2001, 75(11), pp. 613–619.
  • [8] Bosy J., Oruba A., Graszka W., Leonczyk M., Ryczywolski M., ASG-EUPOS densification of EUREF Permanent Network on territory of Poland, ‘Reports on Geodesy’, 2008, 2(85), pp. 105–112.
  • [9] Cai Ch., Gao Y., Modeling and assessment of combined GPS/GLONASS precise point positioning, ‘GPS Solutions’, 2013, 17(2), pp. 223–236.
  • [10] Cai Ch., Gao Y., A Combined GPS/GLONASS Navigation Algorithm for use with Limited Satellite Visibility, ‘Journal of Navigation’, 2009, 62(4), pp. 671–685.
  • [11] Estey L. H., Meertens C. M., TEQC: The Multi-Purposes Toolkit for GPS/GLONASS Data, GPS Solution, 1999, 3(1), pp. 42–49.
  • [12] Federal Air Navigation Authority (FANA), Aeronautical Information Circular of the Russian Federation, 12 February 2009, Russia.
  • [13] Felski A., Nowak A., On EGNOS Monitoring in Local Conditions, ‘Artificial Satellites’, 2013, 48(2), 85-92.
  • [14] GLONASS Interface Control Document, 2008, edition 5.1.
  • [15] Góral W., Skorupa B., Determination of Intermediate Orbit and Position of GLONASS Satellites Based on the Generalized Problem of Two Fixed Centers, ‘Acta Geodynamica et Geomaterialia’, 2012, 9(3), pp. 283–290.
  • [16] GPS SPS Signal Specification, 1995, 2nd edition.
  • [17] Grzegorzewski M., Świątek A., Oszczak S., Ciećko A., Ćwiklak J., Study of EGNOS safety of life serive during the period of solar maximum activity, ‘Artificial Satellites’, 2012, 47(4), pp. 137–145.
  • [18] Hoffman-Wellenhof B., Lichtenegger H., Wasel E., GNSS — GPS, GLONASS, Galileo and more, Springer, Wien — NewYork 2008.
  • [19] IGEX-98, Internation GLONASS Experiment, Workshop proceedings, Nashville, Tennessee 1999.
  • [20] Januszewski J., The Problem of Compatibility and Interoperability of Satellite Navigation Systems in Computation of User’s Position, ‘Artificial Satellites’, 2011, 46(3), pp. 93–102.
  • [21] Januszewski J., Time, its scales and part in satellite navigation systems, ‘Scientific Journals of the Maritime University of Szczecin’, 2010, 20(92), pp. 52–59.
  • [22] Jung S., Seo H., Park D., Sim Ch., A Design of Low Cost Differential GPS system basen on Web-Service, ‘The Journal of the Korea Institute of electronic communication sciences’, 2013, 8(3), pp. 487–498.
  • [23] Kleusberg A., Analytical GPS Navigation Solution, Geodesy — The Challange of the 3rd Millenium, New York: Springer 2003, pp. 93–96.
  • [24] Leick A., GPS Satellite Surveying (3rd edition), John Wiley & Sons, Inc. 2004.
  • [25] Li P., Zhang X., Integrating GPS and GLONASS to accelerate convergance and initialization times of precise point positioning, ‘GPS Solutions’, 2014, 18(3), pp. 461–471.
  • [26] Misra P., Enge P., Global Positioning System: Signals, Measurements, and Performance (Revised Second Edition), Ganga-Jamuna Press, 2011.
  • [27] Monteiro L. S., Moore T., Hill Ch., What is the accuracy of DGPS?, ‘Journal of Navigation’, 2005, 58(2), pp. 207–225.
  • [28] Montenbruck O., Hauschild A., Steigenberger P., Differential Code Bias Estimation using Multi-GNSS Observations and Global Ionosphere Maps, Proceedings of ION-ITM, 2014.
  • [29] Popielarczyk D., Templin T., Application of Integrated GNSS/Hydroacoustic Measurements and GIS Geodatabase Models for Bottom Analysis of Lake Hancza: the Deepest Inland Reservoir in Poland, ‘Pure and Applied Geophysics’, 2013, DOI: 10.1007/s00024-013-0683-9.
  • [30] Rocken C., Meertens C., Stephens B., Braun J., VanHove T., Perry S., Ruud O., McCallum M., Richardson J., UNAVCO Academic Research Infrastructure (ARI) Receiver and Antenna Test Report, UNAVCO, 1995.
  • [31] Roβbach U., Habrich H., Zarraoa N., Transformation parameters between PZ-90 and WGS-84, Proceedings of ION GPS-96, Kansas City, Missouri, 1996.
  • [32] Seeber G., Satellite geodesy: foundations, methods and applications, Walter de Gruyter, 2003.
  • [33] Shuxin Ch., Yongsheng W., Fei Ch., A study of differential GPS positioning accuracy, Proceedings of the 3rd International Conference on Microwave and Milimeter Wave Technology, China, Beijing 2002.
  • [34] Specht C., Accuracy and coverage of the modernized Polish Maritime differential GPS system, ‘Advances in Space Research’, 2011, 47(2), pp. 221–228.
  • [35] Strang G., Borre K., Linear Algebra, Geodesy, and GPS, Wellesley — Cambridge Press, 1997.
  • [36] The United Nations, Satellite navigation and location systems, Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space, A/CONF.184/BP/4, 1998.
  • [37] Torre A. D., Caporali A., An analysis of intersystem biases for multi-GNSS positioning, ‘GPS Solutions’, 2014, DOI: 10.1007/s10291-014-0388-2.
  • [38] Vu A., Ramanandan A., Chen A., Farrel J. A., Barth M., Real-Time Computer Vision/DGPS-Aided Inertial Navigation System for Lane-Level Vehicle Navigation, ‘IEEE Transactions on Intelligent Transportation Systems’, 2012, 13(2), pp. 899–913.
  • [39] Welch G., Bishop G., Introduction to the Kalman Filter, Department of Computer Science University of North Carolina at Chapel Hill, NC, USA, TR 95-041, 2006.
  • [40] Zinoviev A. E., Using GLONASS in Combined GNSS Receivers: Current Status, Proceeding of the ION GNSS 18th International Meeting of the Satellite Division, Long Beach CA, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a190d83-c81e-40c0-b59b-29b62501ee81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.