PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on Tool Condition Parameters Intended for Smart Tool Management in Filleted End Milling

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Filleted end milling is commonly used as a versatile manufacturing process, whereas the optimization for tool condition management is one of the continuously noticed topics. It can also contribute to the achievement of Sustainable Development Goals. A lot of outcomes have been reported so far in the experimental investigations of tool condition parameters. However, the findings and knowledge from theoretical perspective are relatively scarce to advance smart tool management. Hence, the aim of this study is to give theoretical consideration with tool condition parameters. The investigations focus on filleted end milling with some variations of machining conditions. Several tool condition parameters were theoretically proposed after illustrating geometrical modeling with variable description. Then, the demonstrations and discussion were made based on the computational results in filleted end milling. The results visually and numerically ascertained novel findings regarding several characteristics of tool condition parameters
Twórcy
  • Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, Tokyo, Japan
Bibliografia
  • 1. Dantas T.E.T., De-Souza E.D., Destro I.R., Hammes G., Rodriguez C.M.T., Soares S.R. How the combination of Circular Economy and Industry 4.0 can contribute towards achieving the Sustainable Development Goals. Sustainable Production and Consumption. 2021;26:213-227.
  • 2. Bhatt Y., Ghuman K., Dhir A. Sustainable manufacturing. Bibliometrics and content analysis. Journal of Cleaner Production. 2020;260:120988.
  • 3. Kishawy H.A., Hegab H., Saad E. Design for Sustainable Manufacturing: Approach, Implementation, and Assessment. Sustainability. 2018;10:3604.
  • 4. Ahmad S., Wong K.Y., Tseng M.L., Wong W.P. Sustainable product design and development: A review of tools, applications and research prospects. Resources, Conservation and Recycling. 2018;132:49-61.
  • 5. Castro G.D.R., Fernández M.C.G., Colsa Á.U. Unleashing the convergence amid digitalization and sustainability towards pursuing the Sustainable Development Goals (SDGs): A holistic review. Journal of Cleaner Production. 2021;280:122204.
  • 6. Zarte M., Pechmann A., Nunes I.L. Decision support systems for sustainable manufacturing surrounding the product and production life cycle – A literature review. Journal of Cleaner Production. 2019;219:336-349.
  • 7. Salem A., Hegab H., Kishawy H.A. An integrated approach for sustainable machining processes: Assessment, performance analysis, and optimization. Sustainable Production and Consumption. 2021;25:450-470.
  • 8. Equeter L., Ducobu F., Dehombreux P. Cutting Tools Replacement: Toward a Holistic Framework. IFAC-PapersOnLine. 2020;53:227-232.
  • 9. Xie Y., Lian K., Liu Q., Zhang C., Liu H. Digital twin for cutting tool: Modeling, application and service strategy. Journal of Manufacturing Systems. 2021;58:305-312.
  • 10. Sun H., Liu Y., Pan J., Zhang J., Ji W. Enhancing cutting tool sustainability based on remaining useful life prediction. Journal of Cleaner Production. 2020;244:118794.
  • 11. Ambhore N., Kamble D., Chinchanikar S., Wayal V. Tool Condition Monitoring System: A Review, Materials Today. Proceedings. 2015;2:3419-3428.
  • 12. Nath C. Integrated Tool Condition Monitoring Systems and Their Applications: A Comprehensive Review. Procedia Manufacturing. 2020;48:852–863.
  • 13. Kuntoğlu M., Aslan A., Pimenov D.Y., Usca Ü.A., Salur E., Gupta M.K., Mikolajczyk T., Giasin K., Kapłonek W., Sharma S. A Review of Indirect Tool Condition Monitoring Systems and DecisionMaking Methods in Turning: Critical Analysis and Trends. Sensors. 2021;21:108.
  • 14. Siddhpura A., Paurobally R., A review of flank wear prediction methods for tool condition monitoring in a turning process. Int J Adv Manuf Technol. 2013;65:371–393.
  • 15. Serin G., Sener B., Ozbayoglu A.M., Unver H.O. Review of tool condition monitoring in machining and opportunities for deep learning. Int J Adv Manuf Technol. 2020;109:953–974.
  • 16. Patange A.D., Jegadeeshwaran R. Review on tool condition classification in milling: A machine learning approach. Materials Today: Proceedings; 2021.
  • 17. Jeon B., Yoon J.S., Um J., Suh S.H. The architecture development of Industry 4.0 compliant smart machine tool system (SMTS). J Intell Manuf. 2020;31:1837–1859.
  • 18. Mohanraj T., Shankar S., Rajasekar R., Sakthivel N.R., Pramanik A. Tool condition monitoring techniques in milling process — a review. Journal of Materials Research and Technology. 2020;9:1032–1042.
  • 19. Xu X. Machine Tool 4.0 for the new era of manufacturing, Int J Adv Manuf Technol. 2017;92:1893–1900.
  • 20. Altintas Y., Brecher C., Weck M., Witt S. Virtual machine tool, CIRP Annals – Manufacturing Technology. 2005;54:651–704.
  • 21. Takeuchi Y. CAM for Multi-Axis Control and Multi-Tasking Machining, Trans. JSME Series C. 2011;77:3544–3551. (in Japanese)
  • 22. Konobrytskyi D., Hossain M.M., Tucker T.M., Tarbutton J.A., Kurfess T.R. 5-Axis tool path planning based on highly parallel discrete volumetric geometry representation: Part I contact point generation. Computer-Aided Design and Applications. 2018;15:76–89.
  • 23. Lasemi A., Xue D., Gu P. Recent development in CNC machining of freeform surfaces: a state-of-theart review. Comput. Aided Des. 2010;42:641–654.
  • 24. Bo P., Bartoň M., Plakhotnik D., Pottmann H. Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution. Comput. Aided Des. 2016;79:1–11.
  • 25. Harik R.F., Gong H., Bernard A. 5-axis flank milling: A state-of-the-art review. Comput. Aided Des. 2013;45:796–808.
  • 26. Sekine T., Obikawa T. Normal-Unit-Vector-Based Tool Path Generation Using a Modified Local Interpolation for Ball-End Milling, Journal of Advanced Mechanical Design, Systems, and Manufacturing. 2010;4:1246–1260.
  • 27. Mladenovic G.M., Tanovic L.M., Ehmann K.F. Tool path generation for milling of free form surfaces with feedrate scheduling. FME Transactions. 2015;43:9–15.
  • 28. Sekine T., Obikawa T. Novel path interval determination in 5-axis flat end milling. Applied Mathematical Modelling. 2015;39:3459–3480.
  • 29. Sekine T. A Computational Algorithm for Path Interval Determination in Multi-Axis Filleted End Milling. Adv. Sci. Technol. Res. J. 2020;14:198–205.
  • 30. Sekine T., Kameya K. Remarkable characteristics of a novel path interval determination in filleted end milling. Journal Européen des Systèmes Automatisés. 2021;54. (in press)
  • 31. Lazoglu I., Khavidaki S.E.L., Mamedov A., Erdim H. Process Optimization via Feedrate Scheduling in Milling. In: The International Academy for Production Engineering, Laperrière L., Reinhart G. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg; 2014.
  • 32. Habibi M., Kilic Z.M., Altintas Y. Minimizing Flute Engagement to Adjust Tool Orientation for Reducing Surface Errors in Five-Axis Ball End Milling Operations, ASME. J. Manuf. Sci. Eng. 2021;143:021009.
  • 33. Zhang X., Zhang J., Zheng X., Pang B., Zhao W. Tool orientation optimization of 5-axis ball-end milling based on an accurate cutter/workpiece engagement model. CIRP Journal of Manufacturing Science and Technology. 2017;19:106–116.
  • 34. Lotfi S., Rami B., Maher B., Gilles D., Wassila B. An approach to modeling the chip thickness and cutter workpiece engagement region in 3 and 5 axis ball end milling. J. Manuf. Process. 2018;34:7–17.
  • 35. Masmiati N., Sarhan A.A.D. Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach. Measurement. 2015;60:267–275.
  • 36. Wojciechowski S., Maruda R.W., Nieslony P., Krolczyk G.M. Investigation on the edge forces in ball end milling of inclined surfaces. International Journal of Mechanical Sciences. 2016;119:360–369.
  • 37. Budak E., Ozlu E. Development of a thermomechanical cutting process model for machining process simulations. CIRP Annals. 2008;57:97–100.
  • 38. Soori M., Arezoo B. Virtual Machining Systems for CNC Milling and Turning Machine Tools: A Review, International Journal of Engineering and Future Technology, 2021;18:56–104.
  • 39. Davim J.P. Machining of Complex Sculptured Surfaces, Springer; 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a13ee7a-b249-4816-bacd-12a532fa61fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.