PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Counting instances of objects in color images using U-net network on example of honey bees

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (14 ; 01-04.09.2019 ; Leipzig, Germany)
Języki publikacji
EN
Abstrakty
EN
This article presents a novel approach to segmentation and counting of objects in color digital images. The objects belong to a certain class, which in this case are honey bees. The authors briefly present existing approaches which use Convolutional Neural Networks to solve the problem of image segmentation and object recognition. The focus however is on application of U-Net convolutional neural network in an environment where knowledge about the object of interest is only limited to its rough, single pixel location. The authors provide full access to the details of the code used to implement the algorithms, as well as the data sets used and results obtained. The results show an encouraging low level of counting error at 14.27% for the best experiment.
Rocznik
Tom
Strony
87--90
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
  • Zespół Szkół Stowarzyszenia Rodzin Katolickich Archidiecezji Katowickiej im. Kardynała Prymasa Augusta Hlonda, ul. Kościuszki 11, 41-500 Chorzów, Poland
  • Silesian University of Technology, Institute of Informatics, AEI Faculty, ul. Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • 1. I. Goodfellow, Y. Bengio, A.Courville, Deep Learning, Cambridge CA: Massachusetts, pp. 321–359, 2016. https://www.deeplearningbook.org/
  • 2. E.R Davies, Computer Vision. Principles, Algorithms, Applications, Learning, 5th ed., London, pp. 456–462, 2018.
  • 3. R. Yamashita, M. Nishio, R. Kinh Gian Do, K. Togashi, "Convolutional neural networks: an overview and application in radiology", Insights into Imaging, vol. 9, pp. 611–629, 2018. https://doi.org/10.1007/s13244-018-0639-9
  • 4. Z. Zhao, P. Zheng, S. Xu, X. Wu, “Object detection with deep learning: A Review”, Journal of Latex Class Files, vol. 14, no. 8, 2017 https://doi.org/10.1109/TNNLS.2018.2876865
  • 5. O. Ronneberger, P. Fischer, T. Brox, “U-Net: convolutional networks for biomedical image segmentation”, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241, 2015. https://doi.org/10.1007/978-3-319-24574-4_28
  • 6. K. H. Jin, M. T. McCann, E. Froustey and M. Unser, "Deep convolutional neural network for inverse problems in imaging", IEEE Transactions on Image Processing, vol. 26, no. 9, pp. 4509-4522, 2017. https://doi.org/10.1109/TIP.2017.2713099
  • 7. https://www.kaggle.com/jonathanbyrne/to-bee-or-not-to-bee, accessed on the 1st of February 2019.
  • 8. M. Kelcey, “Counting bees on a rasp pi with a conv net”, 2018. http://matpalm.com/blog/counting_bees
  • 9. P. Kingma, J. Lei Ba, “ADAM: a method for stochastic optimization”, arXiv preprint https://arxiv.org/abs/1412.6980, 2014. https://arxiv.org/abs/1412.6980
  • 10. A. Tiwari, “A deep learning approach to recognizing bees in video analysis of bee traffic”, Utah State University All Graduate Theses and Dissertations, 7076, 2018. https://digitalcommons.usu.edu/etd/7076/
  • 11. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, O. Ronneberger, “3D U-Net: Learning dense volumetric segmentation from sparse annotation”, Medical Image Computing and Computer-Assisted Intervention, vol. 9901, pp. 424–432, 2016. https://doi.org/10.1007/978-3-319-46723-8_49
  • 12. J. Chen, L. Yang, Y. Zhang, M. Alber, D.Z. Chen, “Combining Fully Convolutional and Recurrent Neural Networks for 3D Biomedical Image Segmentation”, NIPS'16 Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 3044–3052, 2016. https://arxiv.org/abs/1609.01006
  • 13. J.P. Vigueras-Guillén,B. Sari, S.F. Goes, H.G. Lemij, J. van Rooij, K.A. Vermeer, L.J. van Vliet, "Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation", BMC Biomedical Engineering, vol. 1, 2019. https://doi.org/10.1186/s42490-019-0003-2
  • 14. S. Baek, Y. He, B.G. Allen, J.M. Buatti, B.J. Smith, K. A. Plichta, et al. “What does AI see? Deep segmentation networks discover biomarkers for lung cancer survival”, 2019. https://arxiv.org/abs/1903.11593
  • 15. https://github.com/WeronikaWestwanska/ToBeOrNotToBee, accessed on the 8th of May 2019.
Uwagi
1. Track 1: Artificial Intelligence and Applications
2. Technical Session: 14th International Symposium Advances in Artificial Intelligence and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a1221e8-d766-46af-a7d9-564eb4d4fa16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.