PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cellular Automata model of precipitation in microalloyed niobium steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Model wykorzystujący automaty komórkowe do symulacji procesów wydzieleniowych w stalach z mikrododatkiem niobu
Języki publikacji
EN
Abstrakty
EN
Proposition of a Cellular Automata model of carbonitride precipitation in microalloyed niobium steels is presented in the paper. Transition rules based on the current knowledge regarding precipitation were formulated. The model accounts for an increase of dislocation density due to plastic deformation and predicts kinetics of precipitation as well as shape of precipitates. Numerical tests confirmed qualitatively good predictive capabilities of the model.
PL
W pracy przedstawiono propozycję modelu wykorzystującego metodę automatów komórkowych do opisu kinetyki proccsów wydzieleniowych w stalach mikrostopowych z niobem. Wykorzystując wiedzę dotyczącą procesów wydzieleniowych sformułowane zostały reguły przejścia dla modelu. Model uwzględnia zmiany gęstości dyslokacji w wyniku odkształceń plastycznych i przewiduje kinetykę procesu wydzieleniowego oraz kształt wydziel eń w glikoazotków niobu. Wykonane testy numeryczne potwierdziły jakościowo dobrą dokładność modelu.
Wydawca
Rocznik
Strony
452--459
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • Adrian, H., 1992, Thermodynamic model for precipitation of carbonitrides in high strength low alloyed steels up to three microalloying elements with or without additions of aluminium, Materials Science and Technology, 8, 406-420.
  • Adrian, H., 2011, Numeryczne modelowanie procesów obróbki cieplnej, Wydawnictwa AGH, Kraków, (in Polish).
  • Bratland, D.H., Grong, O., Shercliff, H., Myhr, O.R., Tjotta, S., 1997, Overview no. 124: Modelling of precipitation reactions in industrial processing, Acta Materialia, 45, 1-22.
  • Davies, C.H.J., 1995, The effect of neighbourhood on the kinetics of a cellular automaton recrystallization model, Scripta Melallurgica and Materialia, 33, 1139-1143.
  • Davies, C.H.J., Hong, L., 1999, The cellular automaton simulation of static recrystallization in cold-rolled AA1050, Sripta Materialia, 40, 1145-1150.
  • Ding, R., Guo, Z.X., 2002, Microstructural modelling of dynamic recrystallization using an extended cellular automata approach, Computational Materials Science, 23, 209-218.
  • Dutta, B., Sellars, CM., 1987, Effect of composition and process variables on Nb(C,N) precipitation in niobium mi¬croalloyed austenite, Materials Science and Technology, 3, 197-206.
  • Dutta, B., Valdes, E., Sellars, CM., 1991, Mechanism and kinetics of strain induced precipitation of Nb (C,N) in austenite, Acta Metallurgica et Materialia, 40, 653-662
  • Dutta, B., Palmiere, E.J., Sellars, CM., 2001, Modeling the kinetics of strain induced precipitation in Nb microalloyed steels, Acta Materialia, 49, 785-794.
  • Estrin, Y., Mecking, H., 1984, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metallurgica, 32, 57-70.
  • Gawad, J., Pietrzyk, M., 2007, Application of CAFE coupled model to description of microstructure development during dynamic recrystallization, Archives of Metallurgy and Materials, 52, 257-266.
  • Gladman, T., 1997, The physical metallurgy of microalloyed steels, Institute of Materials, London.
  • Gotab, R., Madej, L., Rauch, L., 2012, Development of distributed cellular automata modeling framework : 3rd European seminar on Computing, Pilsen, 57.
  • Goldschmidt, H.J., Interstitial Alloys, London Butterworths, 1967.
  • Haider, C, Gotab, R., Madej, L., Pietrzyk, M., 2014, Physical base for development of transition rules in the CA model of phase transformation during heating of DP steels, Archives of Civil and Mechanical Engineering, 14, 96-103.
  • Hillert, M., Staffansson, L.I., 1970, Regular solution model for stoichiometric phases and ionic melts, Acta Chemica Scandinavica, 24, 3618-3626
  • Jabtonski, G., Pawrowski, B., Pietrzyk, M., 2012, Application of the Cellular Automata method to modelling lower bain-ite in steels, Computer Methods in Materials Science, 12,51-62.
  • Janssens, K.G.F., 2003, Three dimensional, space-time coupled cellular automata for the simulation of recrystallization and grain growth, Modelling and Simulation in Material Science, 11, 157-171.
  • Karapiperis, T., 1995, Cellular Automaton model of precipitation/dissolution coupled with solute transport, Journal of Statistical Physics, 81, 165-180.
  • Kugler, G., Turk, R., 2006, Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model, Computational Materials Science, 37', 284-291.
  • Lan, Y.J., Li, D.Z., Li, Y.Y., 2004, Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method, Acta Materialia, 52, 1721-1729.
  • Liu, W., Jonas, J.J., 1989, Calculation of the Ti(CyNl-y) -Ti4C2S2 - MnS austenite equilibrium in Ti-bearing steels, Metallurgical Transactions A, 20A, 1361-74.
  • Madej, L., Hodgson, P.D., Pietrzyk, M., 2009, Development of the multi-scale analysis model to simulate strain localization occurring during material processing, Archives of Computational Methods in Engineering, 16, 287-318.
  • Maugis, P., Goune, M., 2005, Kinetics of vanadium carbonitride precipitation in steel: A computer model, Acta Materialia, 53, 3359-3367.
  • Marx, V., Reher, F.R., Gottstein, G., 1999, Simulation of primary recrystallization using a modified three-dimensional cellular automaton, Acta Materialia, 47, 1219-1230
  • Opara, J., Jabłoński, G., Rudzki, D., Pietrzyk, M., 2012, Modelowanie metodą automatów komórkowych cyklu prze-mian fazowych w stalach, Hutnik-Wiadomosci Hutnicze, 79,447-451 (in Polish).
  • Raabe, D., 1998, Computational Materials Science, Wiley -VCHVerlagGmbH.
  • Raabe, D., 2002, Cellular automata in materials science with particular reference to recrystallization simulation, Annual Review of Materials Research, 32, 53-76.
  • Raghavan, S., Satyam, S.S., 2009, Modelling the topological features during grain growth by cellular automaton, Computational Materials Science, 46, 2009, 92-99.
  • Roberts, W., Sandberg, A., 1980, The composition of'V(C.N) as precipitated in HSLA steels microalloyed with vanadium, Report IM 1489, Swedish Institute for Metals Research.
  • Speer, J.G., Michael, J.R., Hansen, S.S., 1987, Carbonitride precipitation in niobium/vanadium microalloyed steels, Metallurgical Transactions A, 18A, 211-222.
  • Wolfram, S., 1983, Statistical mechanics of cellular automata, Reviews of Modern Physics, 55, 601-644.
  • Yang, H„ Wu, C, Li, H.W., Fan, X.G., 2011, Review on cellular automata simulations of microstructure evolution during metal forming process: Grain coarsening, recrystallization and phase transformation, Science China Technological Sciences, 54, 2107-2118.
  • Zhang, L., Hang, C.B., Wang, Y.M., Wang, S.Q., Ye, H.Q., 2003, A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling, Acta Materialia, 51, 5519-5527.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a0f6df2-57f1-4fc5-b4d1-0af2e0f631fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.