PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The new generation of the biologicalengineering materials for applications in medical and dental implant-scaffolds

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The publication aims to find the relationship between the proliferation of surface layers of living cells and the deposition of thin atomic layers deposition ALD coatings on the pores internal surfaces of porous skeletons of medical and dental implant-scaffolds manufactured with the selective laser deposition SLS additive technology using titanium and Ti6Al4V alloy. Design/methodology/approach: The extensive review of the literature presents the state-of-the-art in the field of regenerative medicine and tissue engineering. General ageing of societies, increasing the incidence of oncological diseases and some transport and sports accidents, and also the spread of tooth decay and tooth cavities in many regions of the world has taken place nowadays. Those reasons involve resection of many tissues and organs and the need to replace cavities, among others bones and teeth through implantation, more and more often hybridized with tissue engineering methods. Findings: The results of investigations of the structure and properties of skeleton microporous materials produced from titanium and Ti6Al4V alloy powders by the method of selective laser sintering have been presented. Particularly valuable are the original and previously unpublished results of structural research using high-resolution transmission electron microscope HRTEM. Particular attention has been paid to the issues of surface engineering, in particular, the application of flat TiO2 and Al2O3 coatings applied inside micropores using the atomic layers deposition ALD method and hydroxyapatite applied the dip-coating sol-gel method, including advanced HRTEM research. The most important part of the work concerns the research of nesting and proliferation of live cells of osteoblasts the hFOB 1.19 (Human ATCC - CRL - 11372) culture line on the surface of micropores with surfaces covered with the mentioned layers. Research limitations/implications: The investigations reported in the paper fully confirmed the idea of the hybrid technology of producing microporous implants and implant-scaffolds to achieve original Authors’ biological-engineering materials. The surface engineering issues, including both flat-layered nonorganic coatings and interactions of those coverings with flat layers of living cells, play a crucial role. Originality/value: Materials commonly used in implantology and the most commonly used materials processing technologies in those applications have been described. Against that background, the original Authors' concept of implant-scaffolds and the application of microporous skeleton materials for this purpose have been presented.
Rocznik
Strony
56--85
Opis fizyczny
Bibliogr. 207 poz.
Twórcy
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
  • The University of Zielona Gora, Faculty of Mechanical Engineering, Institute of Machine Design and Machinery Operations, ul. Prof. Szafrana 4, 65-246 Zielona Góra, Poland
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
autor
  • Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
autor
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18 A, 44-100 Gliwice, Poland
autor
  • University of Technology, Mechanical Engineering Faculty, Chair of Lightweight Structures and Plastics Processing, Reichenhainer Straße 31/33, D-09126 Chemnitz, Germany
Bibliografia
  • [1] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Materials surface engineering; Compendium of knowledge and academic textbook, Open Access Library, Annal VIII(l) (2018) 1-1138 (in Polish).
  • [2] L.A. Dobrzański, Metals and Alloys, Open Access Library, Annal VII(2) (2017) 1-982 (in Polish).
  • [3] L.A. Dobrzański, State of knowledge on materials used in implantology and regenerative medicine, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Metallic microporous and solid materials for medical and dental applications, Open Access Library VII(l) (2017) 117-120 (in Polish).
  • [4] L.A. Dobrzański, Introductory Chapter: Multi-Aspect Bibliographic Analysis of the Synergy of Technical, Biological and Medical Sciences Concerning Materials and Technologies Used for Medical and Dental Implantable Devices; doi.org/10.5772/intechopen.73094; in: L.A. Dobrzański (Ed.), Biomaterials in Regenerative Medicine, InTech, Rijeka, 2018, 1-43, doi: 10.5772/ 66233.
  • [5] A.A. Mueller, B. Saldami, S. Stübinger, C. Walter, U. Flückiger, A. Merlo, K. Schwenzer-Zimmerer, H.F. Zeilhofer, S. Zimmerer, Oral bacterial cultures in nontraumatic brain abscesses: results of a first line study, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 107/4 (2009) 469-476, doi: 10.1016/j.tripleo.2008.09.035.
  • [6] N.J. López, P.C. Smith, J. Gutierrez, Periodontal therapy reduce the risk of preterm low birth weight in women with periodontal disease: a randomized controlled trial, Journal of Perio-dontology 73 (2002) 911-924.
  • [7] T.J. Pallasch, M.J. Wahl, Focal infection: new age or ancient history?, Endodontic Topics 4 (2003) 32-45.
  • [8] F.A. Scannapieco, Role of oral bacteria in respiratory infection, Journal of Periodontology 70 (1999) 793-802.
  • [9] F.A. Scannapieco, R.B. Bush, S. Paju, Associations between periodontal disease and risk for nosocomial bacterial pneumonia and chronic obstructive pulmonary disease, A systemic review, Annals of Periodontology 8 (2003) 54-69.
  • [10] P. Kustra, J. Zarzecka, Choroba odogniskowa, Poradnik Stomatologiczny 9/12 (2009) 453-456 (in Polish).
  • [11] M. Aleksander, B. Krishnan, N. Shenoy, Diabetes mellitus and odontogenic infections-an exaggerated risk?, Oral and Maxillofacial Surgery 12/3 (2008) 129-130
  • [12] X. Li, L. Tomstad, I. Olsen, Brain abscesses caused by oral infection, Endodontics & Dental Traumatology 15 (1999) 95-101.
  • [13] V. Calayatud-Perez, J.M. Gimbemat, J. Gonzalez Lagunas, Parietal osteomyelitis of dental origin: a case report, Journal of Cranio-Maxillofacial Surgery 21/3 (1993) 127-129, doi: 10.1016/S1010-5182(05)80178-7.
  • [14] L.A. Dobrzański, The concept of biologically active microporous engineering materials and composite biological-engineering materials for regenerative medicine and dentistry, Archives of Materials Science and Engineering 80/2 (2016) 64-85, doi: 10.5604/ 18972764.1229638.
  • [15] L.A. Dobrzański, Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine, Archives of Materials Science and Engineering 69/2 (2014) 53-80.
  • [16] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering, Archives of Materials Science and Engineering 76/2 (2015) 53-114.
  • [17] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, M. Szindler, L.B. Dobrzański, A. Achtelik-Franczak, E. Hajduczek, Microporous Titanium-Based Materials Coated by Biocompatible Thin Films, doi: 10.5772/ intechopen.70491; in: L.A. Dobrzański (Ed.), Bioma¬terials in Regenerative Medicine, InTech, Rijeka, 2018, 65-109; doi: 10.5772/66233; ISBN: 978-953-51-3776-4.
  • [18] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz A. Achtelik-Franczak, M. Szindler, Structure and properties of the skeleton microporous materials with coatings inside the pores for medical and dental applications, in: M. Muruganant et al. (Eds.), Frontiers in Materials Processing, Applications, Research and Technology. Springer Nature Singapore Pte Ltd, 2018, 297-320, doi: 10.1007/978-981-10-4819-7_26.
  • [13] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.). Metallic microporous and solid materials for medical and dental applications, Open Access Library VII(l) (2017) 1-580 (in Polish).
  • [14] L.A. Dobrzański (Ed.). Powder Metallurgy - Funda¬mentals and Case Studies, Rijeka, InTech, 2017, 1-392.
  • [15] L.A. Dobrzański (Ed), Polymer nanofibers produced by electrospinning applied in regenerative medicine, Open Access Library V(3) (2015) 1-168.
  • [16] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, M. Szindler, T.G. Gaweł, Porous Selective Laser Melted Ti and Ti6A14V Materials for Medical Applications:; in L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, Rijeka, InTech, 2017, 161-181, doi: doi.org/10.5772/65375.
  • [17] J. Nowacki, L.A. Dobrzański, F. Gustavo, Intramedullary implants for osteosynthesis of long bones, Open Access Library 11(17) (2012) 1-150 (in Polish).
  • [18] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, A. Achtelik-Franczak, L.B. Dobrzański, M. Kremzer, The method of producing composite materials with a microporous skeleton reinforcement structure, Patent Application P 417552 from 13.06.2016 (in Polish).
  • [19] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik, Composite made using computer-assisted laser methods for craniofacial implants and the method of its production, Patent Application P 411689 from 23.03.2015, Bulletin of the Patent Office 44/20 (2016) 6 (in Polish).
  • [20] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, L.B. Dobrzański, A. Achtelik-Franczak, Biological and engineering composites for regenerative medicine, Patent Application P 414723 from 9.11.2015 (in Polish).
  • [21] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik- Franczak, Bone implant-scaffold, Patent P 414424 from 19.10.2015 (in Polish).
  • [22] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik- Franczak, Implant-scaffold or a prosthesis of anatomical elements of the stomatognathic and facial system, Patent P 414423 from 19.10.2015 (in Polish).
  • [23] J. Nowacki, L.A. Dobrzański, F. Gustavo, Intramedullary implants for osteosynthesis of long bones, Open Access Library 11(17) (2012) 1-150 (in Polish).
  • [24] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, A. Achtelik-Franczak, L.B. Dobrzański, M. Kremzer, The method of producing composite materials with a microporous skeleton reinforcement structure, Patent Application P 417552 from 13.06.2016 (in Polish).
  • [25] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik, Composite made using computer-assisted laser methods for craniofacial implants and the method of its production, Patent Application P 411689 from 23.03.2015, Bulletin of the Patent Office 44/20 (2016) 6 (in Polish).
  • [26] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, L.B. Dobrzański, A. Achtelik-Franczak, Biological and engineering composites for regenerative medicine, Patent Application P 414723 from 9.11.2015 (in Polish).
  • [27] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik- Franczak, Bone implant-scaffold, Patent P 414424 from 19.10.2015 (in Polish).
  • [28] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik- Franczak, Implant-scaffold or a prosthesis of anatomical elements of the stomatognathic and facial system, Patent P 414423 from 19.10.2015 (in Polish).
  • [29] L.R. Kaiser, The future of multihospital systems, Topics in Health Care Financing 18/4 (1992) 32-45.
  • [30] A. Atala, R. Lanza, J.A. Thomson, R. Nerem (Eds.), Principles of regenerative medicine, Second Edition, Academic Press, San Diego, 2011.
  • [31] Regenerative Medicine 2006, Report, US National Institutes of Health, 2006, http://stemcells.nih.gov/ staticre source s/info/scireport/P DFs/Regenerative_Medici ne_2006.pdf, access: 30.03.2016.
  • [32] C.R. Cogle, S.M. Guthrie, R.C. Sanders, W.L. Allen, E.W. Scott, B.E. Petersen, An Overview of Stem Cell Research and Regulatory Issues, Mayo Clinic Proceedings 78/8 (2003) 993-1003.
  • [33] C.M. Metallo, S.M. Azarin, L. Ji, J.J. De Pablo, S.P. Palecek, Engineering tissue from human embryonic stem cells, Journal of Cellular and Molecular Medicine 12/3 (2008) 709-729.
  • [34] M.R. Płaczek, I.-M. Chung, H.M. Macedo, S. Ismail, T. Mortera Blanco, M. Lim, J.M. Cha, I. Fauzi, Y. Kang, D.C.L Yeo, C.Y.J. Ma, J.M. Polak, N. Panoskaltsis, A. Mantalaris, Stem cell bioprocessing: fundamentals and principles, Journal of The Royal Society Interface 6/32 (2009) 209-232.
  • [35] Y.C. Fung, A Proposal to the National Science Foundation for An Engineering Research Center at UCSD. Center for the Engineering of Living Tissues, UCSD #865023,2001.
  • [36] R. Langer, J.P. Vacanti, Tissue engineering, Science 260/5110 (1993) 920-926.
  • [37] J. Viola, B. Lai, O. Grad, The Emergence of Tissue Engineering as a Research Field, The National Science Foundation, USA, 2003, https://www.nsf.gov/pubs/ 2004/nsf0450/start.htm, access: 17.03.2017.
  • [38] R.P. Lanza, R. Langer, J. Vacanti ( Eds.) Principles of Tissue Engineering, San Diego, Academic Press, 2000.
  • [39] A. Atala, R.P. Lanza (Eds), Methods of Tissue Engineering, San Diego, Academic Press, 2002.
  • [40] B.D. MacArthur, R.O.C. Oreffo, Bridging the gap, Nature 433/7021 (2005) 19.
  • [41] M. Tavassoli, W.H. Crosby, Transplantation of marrow to extramedullary sites, Science 161/3836 (1968) 54-56.
  • [42] C.E. Wilson, W.J. Dhert, C.A. van Blitterswijk, A.J. Verbout, J.D. De Bruijn, Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue assay and the effect on in vivo bone formation, Journal of Materials Science. Materials in Medicine 13/12 (2002) 1265-1269.
  • [43] M.C. Kruyt, J.D. De Bruijn, C.E. Wilson, F.C. Oner, C.A. van Blitterswijk, A.J. Verbout, W.J. Dhert, Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats, Tissue Engineering 9/2 (2003) 327-336.
  • [44] A. Trounson, R.G. Thakar, G. Lomax, D. Gibbons, Clinical trials for stem cell therapies, BMC Medicine 9/52 (2011) 1-7, doi: 10.1186/1741-7015-9-52.
  • [45] C. Mason, M.J. McCall, E.J. Culme-Seymour, S. Suthasan, S. Edwards-Parton, G.A. Bonfiglio, B.C. Reeve, The global cell therapy industry continues to rise during the second and third quarters of 2012, Cell Stem Cell 11/6 (2012) 735-739.
  • [46] N.A. Peppas, R. Langer, New challenges in biomaterials, Science 263/5154 (1994) 1715-1720.
  • [47] J.A. Hubbell, Biomaterials in tissue engineering, Biotechnology (NY) 13/6 (1995) 565-576.
  • [48] J.A. Hubbell, Bioactive biomaterials, Current Opinion in Biotechnology 10/2 (1999) 123-129.
  • [49] K.E. Healy, A. Rezania, R.A. Stile, Designing bioma¬terials to direct biological responses, Annals of the New York Academy of Sciences 875 (1999) 24-35.
  • [50] R. Langer, D.A. Tirrell, Designing materials for bio-logy and medicine, Nature 428/6982 (2004) 487-492.
  • [51] M.P. Lütolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nature Biotechnology 23/1 (2005) 47-55.
  • [52] F. Yang, C.G. Williams, D.A. Wang, H. Lee, P.N. Manson, J. Elisseeff, The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells, Biomaterials 26/30 (2005) 5991-5998.
  • [53] J. Elisseeff, A. Ferran, S. Hwang, S. Varghese, Z. Zhang, The role of biomaterials in stem cell differentiation: Applications in the musculoskeletal system, Stem Cells and Development 15/3 (2006) 295-303.
  • [54] N.S. Hwang, M.S. Kim, S. Sampattavanich, J.H. Baek, Z. Zhang, J. Elisseeff, Effects of threedimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells, Stem Cells 24/2 (2006) 284-291.
  • [55] C.J. Bettinger, J.T. Borenstein, R. Langer, Micro¬fabrication Techniques in Scaffold Development, in: C.T. Laurencin, L.S. Nair (Eds.), Nanotechnology and Tissue Engineering: The Scaffold, CRC Press Taylor & Francis Group, Boca Raton, FL, 2008.
  • [56] M. Noga, A. Pawlak, B. Dybala, B. Dabrowski, W. Swieszkowski, M. Lewandowska-Szumiel, Biological Evaluation of Porous Titanium Scaffolds (Ti-6Al-7Nb) with HAp/Ca-P surface seeded with Human Adipose Derived Stem Cells, Proceedings of the E-MRS Fall Meeting, Warsaw, 2013.
  • [57]J. Rouwkema, N.C. Rivron, C.A. van Blitterswijk, Vascularization in tissue engineering, Trends Biotechnology 26/8 (2008) 434-441.
  • [58] H. Bramfeldt, G. Sabra, V. Centis, P. Vermette, Scaffold Vascularization: A Challenge for Three-Dimensional Tissue Engineering, Current Medicinal Chemistry 17/33 (2010) 3944-3967.
  • [59] R.K. Jain, P. Au, J. Tam, D.G. Duda, D. Fukumura, Engineering vascularized tissue, Nature Biotechnology 23 (2005) 821-823.
  • [60] S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends in Biotechnology 30/10 (2012) 546-554.
  • [61] D.M. Robertson, L. St Pierre, R. Chahal, Preliminary observations of bone ingrowth into porous materials, Journal of Biomedical Materials Research 10 (1976)335- 344.
  • [62]P. Griss, G. Heimke, Record of discussion on stability of joint prostheses, in: D. Williams (Ed.), Biocompatibility of Implant Materials, Sector Publishing, London, 1976, 52-68.
  • [63] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment, Materials Science and Engineering C 59 (2016) 690-701.
  • [64] S.J. Hollister, Scaffold design and manufacturing: from concept to clinic, Advanced Materials 21 (2009) 3330¬3342.
  • [65] R.S. Langer, J.P. Vacanti, Tissue engineering: the challenges ahead, Scientific American 280 (1999)86-89.
  • [66] R. Langer, J.P. Vacanti, Tissue engineering, Science 260 (1993)920-926.
  • [67] L.G. Cima, J.P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, R. Langer, Tissue engineering by cell transplantation using degradable polymer substrates, Journal of Biomechanical Engineering 113 (1991) 143¬151.
  • [68] R. Langer, L.G. Cima, J.A. Tamada, E. Wintermantel, Future directions in biomaterials, Biomaterials 11 (1990) 738-745.
  • [69] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteo-genesis, Biomaterials 26 (2005) 5474-5491.
  • [70] B.J. Story, W.R. Wagner, D.M. Gaisser, S.D. Cook, A.M. Rust-Dawicki, Vivo performance of a modified CSTi dental implant coating, The International Journal of Oral Maxillofacial Implants 13 (1998) 749-757.
  • [71] K.U. Lewandrowski, J.D. Gresser, S.P. Bondre, A.E. Silva, D.L. Wise, D.J. Trantolo, Developing porosity of poly (propylene glycol-co-fumaric acid) bone graft substitutes and the effect on osteointegration: a preliminary histology study in rats. Journal of Biomaterials Science. Polymer Edition 11/8 (2000) 879-889.
  • [72]F. Bai, Z. Wang, J. Lu, J. Liu, G. Chen, R. Lv, J. Wang, K. Lin, J. Zhang, X. Huang, The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study, Tissue Engineering: Part A 16 (2010)3791-3803.
  • [73] J.M. Karp, F. Sarraf, M.S. Shoichet, J.E. Davies, Fibrin- filled scaffolds for bone-tissue engineering: An in vivo study, Journal of Biomedical Materials Research Part A 71/1 (2004) 162-171.
  • [74] J. Street, D. Winter, J.H. Wang, A. Wakai, A. McGuinness H.P. Redmond, Is human fracture hematoma inherently angiogenic?, Clinical Orthopaedics and Related Research 378 (2000) 224-237.
  • [75] X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials 83 (2016) 127-141.
  • [76] C. Yan, L. Hao, A. Hussein, P. Young, D. Raymont, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Materials and Design 55 (2014) 533-541.
  • [77] L. Lu, J. Fuh, Z. Chen, C.C. Leong, Y.S. Wong, In situ formation of TiC composite using selective laser melting, Materials Research Bulletin 35/9 (2000)1555-1561.
  • [78] S. Kumar, Selective Laser Sintering: A Qualitative and Objective Approach, Modeling and Characterization 55/10 (2003)43-47.
  • [79] S. Mellor, L. Hao, D. Zhang, Additive manufacturing: A framework for implementation, International Journal of Production Economics 149 (2014)194-201.
  • [80] N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Frontiers of Mechanical Engineering 8/3 (2013) 215-243, doi: 10.1007/sl 1465¬013-0248-8.
  • [81] R. Melechow, K. Tubielewicz, W. Blaszczyk, Titanium and its alloys: species, properties, application, treatment technology, degradation,, Czestochowa University of Technology Publishing House, Czestochowa, 2004 (in Polish).
  • [82] V.M. Kevorkijan, The reactive infiltration of porous ceramic media by a molten aluminum alloy, Composites Science and Technology 59 (1999)683-686.
  • [83]V.K. Balia, S. Bodhak, S. Bose, A. Bandyopadhyay, Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties, Acta Biomaterialia 6/8 (2010)3349-3359.
  • [84] K. Das, V.K. Balia, A. Bandyopadhyay, S. Bose, Surface modification of laser-processed porous titanium for load- bearing implants, Scripta Materialia 59/8 (2008)822-825.
  • [85] F. Witte, H. Ulrich, C. Palm, E. Willbold, Biodegradable magnesium scaffolds: Part II: Periimplant bone remodelling, Journal of Biomedical Materials Research Part A 81/3 (2007)757-765.
  • [86] A. Bandyopadhyay, F. España, V.K. Balia, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6A14 implants, Acta Biomaterialia 6 (2010) 1640-1648.
  • [87] A. Nouri, P.D. Hodgson, C. Wen, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Appli¬cations, in: A. Mukherjee (Ed.), Biomimetics Learning from Nature, InTech, Rijeka, Croatia, 2010, 415-450.
  • [88] K. Yoshida, Y. Saiki, S. Ohkubo, Improvement of drawability and fabrication possibility of dental implant screw made of pure titanium, Metallurgist -Metallurgical News 78/1 (2011) 153-156.
  • [89] E. Trummer, K. Fauland, S. Seidinger, K. Schriebl, C. Lattenmayer, R. Kunert, K. Vorauer-Uhl, R. Weik, N. Borth, H. Katinger, D. Müller, Process parameter shifting: part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors, Biotechnology and Bioengineering 94/6 (2006) 1033-1044.
  • [90] M. Butler, Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals, Applied Microbiology and Biotechnology 68/3 (2005) 283-291.
  • [91] V. Singh, Disposable bioreactor for cell culture using wave- induced agitation, Cytotechnology 30/1-3 (1999) 149-158.
  • [92] H. Kasuto, N. Drori-Carmi, B. Zohar, Methods and systems for harvesting cells, U.S. Patent 20140030805 Al, 2014.
  • [93] G. Zeikus, Pneumatic bioreactor, U.S. Patent 7628528 B2, 2009.
  • [94] C. Sieblist, O. Hageholz, M. Aehle, M. Jenzsch, M. Pohlscheidt, A. Lübbert, Insights into large-scale cell- culture reactors: II. Gas-phase mixing and C02 stripping, Biotechnology Journal 6/12 (2011) 1547-1556.
  • [95] J. Kim, J. Seong, B. Lee, Y. Hashimura, D. Groux, D. Oh, Evaluation of a novel pneumatic bioreactor system for culture of recombinant Chinese hamster ovary cells, Biotechnology and Bioprocess Engineering 18/4 (2013) 801-807.
  • [96] B. Lee, D. Fang, M. Croughan, M. Carrondo, S.-H. Paik, Characterization of novel pneumatic mixing for single¬use bioreactor application, BMC Proceedings 5/Suppl.8 (2011) 1-2.
  • [97] W. Xue, K.B. Vamsi, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomateralia 3 (2007) 1007-1018.
  • [98] K. Osakada, M. Shiomi, Flexible manufacturing of metallic products by selective laser melting of powder, International Journal of Machine Tools & Manufacture 46 (2006)1188-1193.
  • [99] J.P. Kruth Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal 11/1 (2005) 26-36, doi: 10.1108/13552540510573365.
  • [100] L.S. Bertol, W.K. Júnior, F.P. da Silva, C.A. Kopp, Medical design: Direct metal laser sintering of TÍ-6A1- 4V, Materials and Design 31 (2010)3982-3988.
  • [101] D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Ni-shida, T. Nakamura, T. Kokubo, Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments, Acta Biomaterialia 7 (2011)1398-1406.
  • [102] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology 111/1-3 (2001) 210¬213, doi: 10.1016/S0924- 0136(01)00522-2.
  • [103] P. Darlak, P. Dudek, High-porous materials - production methods and application, Founding: Science and practice 1 (2004) 3-17 (in Polish).
  • [104] J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder jet, Journal of Materials Processing Technology 149/1-3 (2004) 616-622, doi: 10.1016/ j .jmatprotec.2003.11.051.
  • [105] B. Lethaus, L. Poort, R. Bockmann, R. Smeets, R. Tolba, P. Kessler, Additive manufacturing for microvascular reconstruction of the mandiblein 20 patients, Journal of Cranio-Maxillo-Facial Surgery 40/1 (2012) 43-46, doi: 10.1016/j.jcms.2011.01.007.
  • [106] Y.S. Liao, H.C. Li, Y.Y. Chiu, Study of laminated object manufacturing with separately applied heating and pressing, International Journal of Advanced Manufacturing Technology 27/7-8 (2006) 703-707, doi: 10.1007/s00170-004-2201-9.
  • [107] V. Manakari, G. Parande, M. Gupta, Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review, Metals 7 (2017) 2-35, doi:10.3390/ met7010002.
  • [108] L.B. Dobrzański, Mechanical Properties Comparison of Engineering Materials Produced by Additive and Subtractive Technologies for Dental Prosthetic Restoration Application, doi: 10.5772/intechopen. 70493; in: L.A. Dobrzański (Ed.), Biomaterials in Regenerative Medicine, InTech, Rijeka, 2018, 111-159, doi: 10.5772/66233; ISBN: 978-953-51-3776-4.
  • [109] S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends in Biotechnology 30/10 (2012) 546-554.
  • [110] Y. Khan, M.J. Yaszemski, A.G. Mikos, C.T. Laurencin, Tissue engineering of bone: material and matrix considerations, Journal of Bone & Joint Surgery 90/Suppl.l (2008) 36-42.
  • [111] J. Rouwkema, N.C. Rivron, C.A. van Blitterswijk, Vascularization in tissue engineering, Trends Biotechnology 26/8 (2008) 434-441.
  • [112] M.A. Tara, S. Eschbach, F. Bohlsen, M. Kern, Clinical outcome of metal-ceramic crowns fabricated with laser- sintering technology, The International Journal of Prosthodontics 24 (2011) 46-48.
  • [113] K. Quante, K. Ludwig, M. Kern, Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology, Dental Materials 24 (2008) 1311¬1315.
  • [114] R. Śpiewak, J. Piętowska, Nickel - an exceptional allergen. From the structure of the atom to legal regulations. Allergology and Immunology 3/34 (2006) 5862 (in Polish).
  • [115] W. Uter, J. Hegewald, W. Aberer, F. Ayala, A.J. Bircher, J. Brasch, P.-J. Coenraads, et al., The European standard series in 9 European countries, 2002/2003 first results of the European Surveillance System on Contact Allergies, Contact Dermatitis 53 (2005) 136145, doi:10.1111/j.0105-1873.2005.00673.x.
  • [116] R. Spiewak, (Allergic contact dermatitis in childhood. A review and meta-analysis, Allergologie 25 (2002) 374381 (in German).
  • [117] R. Nowosielski, A. Gawlas-Mucha, A. Borowski, A. Guwer, Fabrication and properties of magnesium based alloys Mg-Ca, Journal of Achievements in Materials and Manufacturing Engineering 61/2 (2013) 367-374.
  • [118] Y. Yun, Z. Dong, N. Lee, Y. Liu, D. Xue, X. Guo, J. Kuhlmann, A. Doepke, H.B. Halsall, W. Heineman, S. Sun^daramurthy, M.J. Schulz, Z. Yin, V. Shanov, D. Hurd, P. Nagy, W. Li, C. Fox, Revolutionizing biodegradable metals, Materials Today 12/10 (2009) 22-32.
  • [119] R. Spiewak, P.Z. Brewczynski, Complications following the stabilization of a femoral fracture with a metal plate in a patient with contact allergy to chromium, nickel and cobalt, Polish Medical Weekly 48/28-30 (1993) 651652 (in Polish).
  • [120] E.F. Huget, Dental Alloys: Biological Considerations, ADA034510, U.S. Army Institute of Dental Research, Washington D.C., 1977, source: http://www.dtic.mil/ dtic/tr/fulltext/u2/a034510.pdf.
  • [121] European Parliament and Council Directive 94/27/EC of 30 June 1994 amending for the 12th time Directive 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the Member States relating to restrictions on the marketing and use of certain dangerous substances and preparations, Official Journal L 188,22.07.1994,12.
  • [122] T. Koutsoukis, S. Zinelis, G. Eliades, K. Al-Wazzan, M. Al Rifaiy, Y.S. Al Jabbari, Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques, Journal of Prosthodontics C 24 (2015)303-312.
  • [123] R.C. Oyague, A. Sanchez-Turrion, J.F. Lopez-Lozano, M.J. Suarez-Garcia, Vertical discrepancy and microleakage of laser-sintered and vacuum- cast implant-supported structures luted with different cement types, Journal of Dentistry 40/2 (2012) 123-130.
  • [124] Y. Ucar, T. Akova, M.S. Akyil, W.A. Brantley, Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns, The Journal of Prosthetic Dentistry 102 (2009) 253-259.
  • [125] R. Castillo-de-Oyague, A. Sanchez-Turrion, J.F. Lopez- Lozano, A. Albaladejo, D. Torres-Lagares, J. Montero, M.J. Suarez-Garcia, Vertical misfit of laser-sintered and vacuum- cast implant- supported crown copings luted with definitive and temporary luting agents, Medicina Oral Patologia Oral y Cirugia Bucal 17/4 (2012) e610-e617.
  • [126] R. Castillo-Oyague C.D. Lynch, A.S. Turrion, J.F.López-Lozano, D. Torres-Lagares, M.-J. Suarez- Garcia, Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents, Journal of Dentistry 41/1 (2013) 90 96.
  • [127] R.C. Oyague, A. Sanchez-Turrion, J.F. Lopez-Lozano, J. Montero, A. Albaladejo, M.J. Suarez-Garcia, Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques, OdontologylOO (2012) 249-253.
  • [128] A. Ortorp, D. Jonsson, A. Mouhsen, P. Vult von Steyem, The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study, Dental Materials 27 (2011) 356-363.
  • [129] K.B. Kim, J.H. Kim, W.C. Kim, H.Y. Kim, J.H. Kim, Evaluation of the marginal and internal gap of metal- ceramic crown fabricated with a selective laser sintering technology: two- and three-dimensional replica techniques, The Journal of Advanced Prosthodontics 5 (2013) 179-186.
  • [130] L. Klimek, D. Zimmer, Impact of heat treatment on mechanical properties and structure of Co-Cr-Mo alloys - Wironit Extrahart, Modem Dental Technician 6 (2015) 26-30 (in Polish).
  • [131] B. Surowska, K. Beer, J. Borowicz, I. Veremchuk, The influence of casting technologies on the quality of dental cobalt alloy, Progress in Science and Technology 11 (2011) 81-88 (in Polish).
  • [132] M.C. Lucchetti, G. Fratto, F. Valeriani, E. De Vittori, S. Giampaoli, P. Papetti, V. Romano Spica, L. Manzon, Cobalt- chromium alloys in dentistry: An evaluation of metal ion release, Journal of Prosthetic Dentistry 114/4 (2015) 602-608, doi: 10.1016/j.prosdent.2015.03.002.
  • [133] B. Kacprzyk, T. Szymczak, G. Gumienny, L. Klimek, Effect of the Remelting on Transfor-mations in Co-Cr- Mo Prosthetics Alloy, Archives of Foundry Engineering 13/3 (2013) 47-50, doi: 10.2478/afe-2013-0057.
  • [134] J. Sokołowski, L. Klimek, A. Rzepkowski, G. Sokołowski, M. Cajdler, M. Łukomska-Szymańska, Evaluation of selected properties of metal components of prostheses made of CoCr alloys by laser microfainting, milling and sintering methods, Journal of Stomatology 67/1 (2014) 28 (in Polish).
  • [135] F. Witte, H. Ulrich, C. Palm, E. Willbold, Biodegradable magnesium scaffolds: Part II: Periimplant bone remodelling, Journal of Biomedical Materials Research Part A 81/3 (2007) 757-765.
  • [136] V.K. Balia, S. Bodhak, S. Bose, A. Bandyopadhyay, Porous tantalum structures for bone implants: Fabrication, mecha^nical and in vitro biological properties, Acta Biomaterialia 6/8 (2010) 3349-3359.
  • [137] Y. Xin, T. Hu, P. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomaterialia 7 (2011) 1452-1459.
  • [138] R. Rettig, S. Virtanen, Time-dependent electrochemical characterization of the corrosion of a magnesium rare- earth alloy in simulated body fluids, Journal of Bio¬medical Materials Research Part A 85 (2008) 167-175.
  • [139] K. Das, V.K. Balia, A. Bandyopadhyay, S. Bose, Surface modification of laser-processed porous titanium for load-bearing implants, Scripta Materialia 59/6 (2008) 822-825.
  • [140] J. Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, Oxford, 2001.
  • [141] J. Hong, J. Andersson, K.N. Ekdahl, G. Elgue, N. Axen, R. Larsson, B. Nilsson, Titanium is a highly thrombo- genic biomaterial: Possible implications for osteogenesis, Thrombosis and Haemostasis 82/1 (1999)58-64.
  • [142] Y.C. Chai, G. Kerckhofs, S.J. Roberts, S. Van Bael, E. Schepers, J. Vleugels, F.P. Luyten, J. Schrooten, Ectopic bone formation by 3D porous calcium phosphate-Ti6A14V hybrids produced by perfusion electrodeposition, Bio- materials 33 (2012) 4044-4058.
  • [143] J. Markwardt, J. Friedrichs, C. Werner, A. Davids, H. Weise, R. Lesche, A. Weber, U. Range, H. Meißner, G. Lauer, B. Reitemeier, Experimental study on the behavior of primary human osteoblasts on laser-cused pure titanium surfaces, Journal of Biomedical Materials Research Part A 102 (2014) 1422-1430.
  • [144] D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, T. Kokubo, Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments, Acta Biomaterialia 7 (2011)1398-1406.
  • [145] S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oos- terwyck, J.P. Kruth, J. Schrooten, The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6A14V bone scaffolds, Acta Biomaterialia 8 (2012)2824-2834.
  • [146] A. Bandyopadhyay, F. España, V.K. Balia, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6A14V implants, Acta Biomaterialia 6 (2010) 1640-1648.
  • [147] A. Zięty, M. Lachowicz, Analysis of the microstructure influence on the corrosion resistance of Ti6A17Nb titanium alloy, Current Problems of Biomechanics 8 (2014) 187-192 (in Polish).
  • [148] Y. Okazaki, Y. Ito, K. Kyo, T. Tateishi, Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al, Materials Science and Engineering A 213 (1966) 138-147.
  • [149] M.F. Semlitsch, H. Weber, R.M. Streicher, R. Schoen, Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy, Biomaterials 13/11 (1992)781-788.
  • [150] V. Oliveira, R.R. Chaves, R. Bertazzoli, R. Caram, Preparation and characterization of Ti-Al-Nb alloys for orthopedic implants, Brazilian Journal of Chemical Engineering 15/4 (1998), doi: 10.1590/S0104-66321998000400002.
  • [151] N.A. Al-Mobarak, A.A. Al-Swayih, F.A. Al-Rashoud, Corrosion Behavior of Ti-6Al-7Nb Alloy in Biological Solution for Dentistry Applications, International Journal of Electro-chemical Science 6 (2011) 2031-2042.
  • [152] R. Dąbrowski, J. Pacyna, J. Kochahczyk, The formation of microstructure of and fracture toughness of TÍ-6A1- 7Nb alloy for biomedical applications, Acta Bio-Optica et Informática Medica. Biomedical Engineering 22/3 (2016) 130-137 (in Polish).
  • [153] C.J. Boehlert, C.J. Cowen, J.P. Quast, T. Akahori, M. Niinomi, Fatigue and wear evaluation of Ti-Al-Nb alloys for biomedical applications, Materials Science and Engineering C 28/3 (2008) 323-330, doi: 10.1016/j.msec. 2007.04.003.
  • [154] M. Walkowiak-Przybyło, L. Klimek, W. Okrój, W. Jakubowski, M. Chwilka, A. Czajka, B. Walkowiak, Adhesion, activation, and aggregation of blond plateles and biofilm formation on the surfaces of titanium alloys TÍ6A14V and Ti6A17Nb, Journal of Biomedical Materials Research Part A 100/3 (2012) 768-775, doi: 10.1002/jbm.a 34006.
  • [155] B.V. Venkatarman, S. Sudha, Vanadium toxicity, Asian Journal of Experimental Sciences 19/2 (2005) 127-134.
  • [156] H.A. Ngwa, A. Kanthasamy, V. Anantharam, C. Song, T. Witte, R. Houk, A.G. Kanthasamy, Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson’s disease, Toxicology and Applied Pharmacology 240/2 (2009) 273-285, doi: 10.1016/j.taap.2009.07.025.
  • [157] W. Okrój, L. Klimek, P. Komorowski, B. Walkowiak, Blood platelets contact with titanium alloy TÍ6A14V and with its modified surfaces, Engineering of Biomaterials 8/43-44 (2005) 13-16 (in Polish).
  • [158] Y. Tanaka, K. Kurashima, H. Saito, A. Nagai, Y. Tsutsumi, H. Doi, N. Nomura, T. Hanawa, In vitro short-term platelet adhesion on various metals, Journal of Artificial Organs 12/3 (2009)182-186.
  • [159] L.G. Harris, D.O. Meredith, L. Eschbach, R.G. Richards, Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials, Journal of Materials Science: Materials in Medicine 18/6 (2007) 1151-1156, doi: 10.1007/sl0856-007-0143-0.
  • [160] E. Olędzka, M. Sobczak, W.L. Kołodziejski, Polymers in medicine - review of recent studies, Polymers 52/11¬12 (2007) 793-803 (in Polish).
  • [161] P. Roach, D. Eglin, K. Ronde, C.C. Perry, Modem biomaterials: a review - bulk properties and implications of surface modifications, Journal of Materials Science. Materials in Medicine 18/7 (2007) 1263-1277, doi: 10.1007/sl0856-006-0064-3.
  • [162] M. Tanaka, Design of novel 2D and 3D biointerfaces using self-organization to control cell behavior, Biochimica et Biophysica Acta 1810/3 (2011) 251-258, doi: 10.1016/j.bbagen.2010.10.002.
  • [163] A. Diener, B. Nebe, P. Becker, U. Bech, F. Luthen, H.G. Neumann, J. Rychly, Control of focal adhesion dynamics by material surface characteristics, Biomaterials 26/4 (2005) 383-392, doi: 10.1016/j.biomaterials.2004.02.038.
  • [164] D. Zahor, A. Radko, R. Vago, L.A. Gheber, Organization of mesenchymal stem cells is controlled by micropattemed silicon substrates, Materials Science and Engineering: C 27/1 (2007) 117-121, doi: 10.1016/ j.msec.2006.03.005.
  • [165] Y.W. Fan, F.Z. Cui, S.P. Hou, Q.Y. Xu, L.N. Chen, I.S. Lee, Culture of neural cells on silicon wafers with nano¬scale surface topograph, Journal of Neuroscience Methods 120/1(2002) 17-23, doi: 10.1016/S0165-0270(02)00181-4.
  • [166] M.J. Poellmann, P.A. Harrell, W.P. King, A.J. Wagoner Johnson, Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates, Acta Biomaterialia 6/9 (2010) 3514-3523, doi: 10.1016/j.actbio.2010.03.041.
  • [167] M.J.P. Biggs, R.G. Richards, M.J. Dalby, Nanoto- pographical modification: a regulator of cellular function through focal adhesions, Nanomedicine: Nanotechnology, Biology, and Medicine 6/5 (2010) 619-633, doi: 10.1016/j.nano.2010.01.009.
  • [168] W.A. Loesberg, Mechanosensitivity of Fibroblasts Interaction between altered gravity conditions and surface topography, PhD thesis, Chapter 1, Radboud University Nijmegen, The Netherlands, 2008.
  • [169] J.L. Ricci, J.C. Grew, H. Alexander, Connective-tissue responses to defined biomaterial surfaces. I. Growth of rat fibroblast and bone marrow cell colonies on micro¬grooved substrates, Journal of Biomedical Materials Research. Part A 85/2 (2007) 313-325, doi:10.1002/ jbm.a.31379.
  • [170] K. Kieswetter, Z. Schwartz, T.W. Humrnert, D.L. Cochran, J. Simpson, S.D.D. Dean, B.D. Boyan, Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells, Journal of Biomedical Materials Research 32/1 (1996) 55-63, doi: 10.1002/(sici)1097-4636(199609)32:l<55 ::aid JBM7>3.0. co;2-o.
  • [171] N.R. Washburn, K.M. Yamada, C.G. Simon Jr., S.B. Kennedya, E.J. Amis, Hight hrough put investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation, Biomaterials 25/7-8 (2004) 1215-1224, doi: 10.1016/j.biomaterials. 2003.08.043.
  • [172] T.P. Kunzler, T. Drobek, M. Schuler, N.D. Spencer, Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients, Biomaterials 28/13 (2007) 2175-2182, doi: 10.1016/j. biomaterials.2007.01.019.
  • [173] R.A. Marklein, J.A. Burdick, Controlling Stem Cell Fate with Material Design, Advanced Materials 22/2 (2010) 175-189, doi: 10.1002/adma.200901055.
  • [174] T.-W. Chung, S.-S. Wang, Y.-Z. Wang, C.-H. Hsieh, E. Fu, Enhancing growth and proliferation of human gingival fibroblasts on chitosan grafted poly (s- caprolactone) films is influenced by nano-roughness chitosan surfaces, Journal of Materials Science: Materials in Medicine 20/1 (2009) 397-404, doi: 10.1007/sl0856-008-3586-z.
  • [175] C. Xu, F. Yang, S. Wang, S. Ramakrishna, In vitro study of human vascular endothelial cell function on materials with various surface roughness, Journal of Biomedical Materials Research Part A 71/1 (2004) 154¬161, doi: 10.1002/jbm.a.30143.
  • [176] E.R. Takamori, R. Cruz, F. Gongalvez, R.V. Zanetti, A. Zanetti, J.M. Granjeiro, Effect of roughness of zirconia and titanium on fibroblast adhesion, Artificial Organs 32/4 (2008) 305-309, doi: 10.UU/j.1525-1594.2008. 00547.x.
  • [177] J.M. Lopacinska, C. Gradinaru, R. Wierzbicki, C. Kobler, M.S. Schmidt, M.T. Madsen, M. Skolimowski, M. Dufva, H. Flyvbjerg, K. Molhvae, Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black, Nanoscale 4/12(2012) 3739-3745, doi: 10.1039/c2nrll455k.
  • [178] A. Folch, M. Toner, Microengineering of cellular interactions, Annual Review of Biomedical Engineering 2 (2000) 227-256, doi: 10.1146/annurev.bioeng.2.1.227.
  • [179] K. Faid, R. Voicu, M. Bani-Yaghoub, R. Tremblay, G. Mealing, C. Py, R. Barjovanu, Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures, Biomedical Microdevices 7/3 (2005) 179-184, doi: 10.1007/sl0544-005-3023-8.
  • [180] G.R. Owen, J. Jackson, B. Chehroudi, H. Burt, D.M. Brunette, A PLGA membrane controlling cell behaviour for promoting tissue regeneration, Biomaterials 26/35 (2005) 7447-7756, doi: 10.1016/j.biomaterials.2005.05. 055.
  • [181] T. Eklblad, B. Liedberg, Protein adsorption and surface patterning, Current Opinion in Colloid & Interface Science 15/6 (2010) 499-509, doi: 10.1016/j.cocis. 2010.07.008.
  • [182] K. Sakakibara, J.P. Hill, K. Ariga, Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds, Small 7/10 (2011) 1288¬1308, doi: 10.1002/smll.201002350.
  • [183] K.B. McClary, T. Ugarova, D.W. Grainger, Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold, Journal of Biomedical Materials Research 50/3 (2000) 428-439.
  • [184] Z.Z. Liu, M.L. Wong, L.G. Griffiths, Effect of bovine pericardial extracellular matrix scaffold niche on seeded human mesenchymal stem cell function, Scientific Reports 6/37089 (2016) 1-12, doi: 10.1038/srep37089.
  • [185] B.J. Papenburg, E.D. Rodrigues, M. Wessling, D. Stamatialis, Insights into the role of material surface topography and wettability on cell-material interactions, Soft Matter 6/18 (2010) 4377-4388, doi: 10.1039/ B927207K.
  • [186] J.M. Curran, R. Chen, J.A. Hurt, Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces, Biomaterials 26/34 (2005) 7057-7067, doi: 10.1016/j.biomaterials.2005.05.008.
  • [187] B.G. Keselowsky, D.M. Collard, A.J. Garcia, Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation, Proceedings of the National Academy of Sciences of the USA 102/17 (2005) 5953-5957, doi: 10.1073/pnas.0407356102.
  • [188] M.A. Łan, C.A. Gersbach, K.E. Michael, B.G. Keselowsky, A.J. García, Myoblast proliferation and differentiation on fibronectin-coated self-assembled monolayers presenting different surface chemistries, Biomaterials 26/22 (2005) 4523-4531, doi: 10.1016/ j.biomaterials.2004.11.028.
  • [189] L.A. Dobrzański, D. Pakuła, M. Staszuk, Chemical Vapor Deposition in Manufacturing, in: A.Y.C. Nee (ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, pp. 2755¬2803 (ISBN 978-1-4471-4669-8).
  • [190] L.A. Dobrzański, K. Golombek, K. Lukaszkowicz: Physical Vapor Deposition in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2719-2754.
  • [191] A.D. Dobrzanska-Danikiewicz, Computer integrated development prediction methodology in materials surface engineering, Open Access Library 1/7 (2012) 1¬289 (in Polish).
  • [192] A.D. Dobrzanska-Danikiewicz, Foresight of material surface engineering as a tool building a knowledge based economy, Materials Science Forum 706-709 (2012) 2511-2516.
  • [193] A.D. Dobrzanska-Danikiewicz, The Book of Critical Technologies of Surface and Properties Formation of Engineering Materials, Open Access Library 8/23 (2013) 1-823 (in Polish).
  • [194] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Foresight of the Surface Technology in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015,2587-2637.
  • [195] T. Suntola, J. Antson, Method for producing compound thin films, US Pat. 4,058,430,1974-11-29/1977-11-15.
  • [196] I. Piwoński, K. Soliwoda, The effect of ceramic nanoparticles on tribological properties of alumina sol-gel thin coatings, Ceramics International 36 (2010) 47-54.
  • [197] S.D. Zilio, G.D. Giustina, G. Brustain, M. Tormen, Microlens arrays on large area UV transparent hybrid sol-gel materials for optical tools, Microelectronic Engineering 87(2010) 1143-1146.
  • [198] M. Krissanasaeranee, P. Supaphol, S. Wongkasemjit, Preparation of poly(vinyl alcohol)/tin glycolate composite fibers by combined sol-gel/electrospinning techniques and their conversion to ultrafine tin oxide fibers, Materials Chemistry and Physics 119 (2010) 175¬181.
  • [199] J.J. Livage, Sol-gel process, Current Opinion in Solid State and Materials Science 2 (1997) 132-138.
  • [200] J.F. Pollock, K.E. Healy, Mechanical and swelling characterization of poly(N-isopropyl acrylamide-co- methoxy poly(ethylen glycol) methacrylate) sol-gels, Acta Biomaterialia 6 (2010) 1307-1318.
  • [201] A. Biedunkiewicz, Characteristics of the TiC coatings produced by sol-gel technique on ceramic tools, Materials Engineering 23/5 (2002) 364-367 (in Polish).
  • [202] Sol-Gel Technology and Products, CHEMAT GROUP, USA - China - Europe, www.chemat.com, 2011, access 19.03.2017.
  • [203] J.D. Wrigth, N.A.J.M. Sommerdijk, Sol-Gel Materials, Chemistry and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.
  • [204] K. Hwang, J. Song, B. Kang, Y. Park, Sol-gel derived hydroxyapatite films on alumina substrates, Surface and Coatings Technology 123/2-3 (2000) 252-255.
  • [205] Y. Dong, Q. Zhao, S. Wu, X. Lu, Ultraviolet-shielding and conductive double functional films coated on glass substrates by sol-gel process, Journal of Rare Earths 28/Suppl. 1 (2010)446-450.
  • [206] M. Langlet, A Kim, M Audier, C Guillard, J.M Herrmann, Transparent photocatalytic films deposited on polymer substrates from sol-gel processed titania sols, Thin Solid Films 429/1-2 (2003) 13-21, doi: 10.1016/S0040-6090(02)01290-7.
  • [207] M. Seo, Y. Akutsu, H. Kagemoto, Preparation and properties of Sb-doped Sn02/metal substrates by sol-gel and dip coating, Ceramics International 33/4 (2007) 625-629, doi:10.1016/j.ceramint.2005.11.013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a0e60de-551f-4546-895d-bbb7f0eec43e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.