PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Simple Method for Calculating the Detonation Pressure of Ideal and Non-Ideal Explosives Containing Aluminum and Ammonium Nitrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A general and simple method has been developed for calculating the detonation pressure of different kinds of ideal and non-ideal explosives containing aluminum (Al) and ammonium nitrate (AN). The new model can be applied to CHNO and CHNOFCl explosives in pure form or as mixtures as well as non-ideal mixed explosives including Al and AN. It can also be used for different plastic bonded explosives (PBXs). There is no need for any prior knowledge about the measured or calculated properties of the explosive. The only data needed are the standard enthalpy of formation and the loading density of the desired explosive. The predicted detonation pressures were compared with other predictive methods and outputs of BKWS-EOS, in both full and partial equilibrium. Different statistical parameters as well as cross validation parameters showed that the new model is precise, accurate, well-defined, and robust for predicting the detonation pressures of CHNOFCl(Al/AN) energetic materials.
Rocznik
Strony
966--983
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr P.O. Box 83145/115, Islamic Republic of Iran
Bibliografia
  • [1] Sikder, A. K.; Maddala, G.; Agrawal, J. P.; Singh, H. Important Aaspects of Behaviour of Organic Energetic Compounds: a Review. J. Hazard. Mater. 2001, A84: 1-26.
  • [2] Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH, Cornwall, Great Britain 2010; ISBN 978-3-527-32610-5.
  • [3] Sućeska, M. Calculation of Detonation Parameters by EXPLO5 Computer Program. Mater. Sci. Forum 2004, 465: 325-330.
  • [4] Kamlet, M. J.; Jacobs S. J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives. J. Chem. Phys. 1968, 48(1): 23-35.
  • [5] Keshavarz M. H.; Pouretedal H.R. Estimation of Detonation Velocity of CHNOFCl Explosives. High Temp. - High Press. 2003, 35(5): 593-600.
  • [6] Keshavarz, M. H.; Pouretedal, H.R. An Empirical Method for Predicting Detonation Pressure of CHNOFCl Explosives. Thermochim. Acta 2004, 414(2): 203-208.
  • [7] Hobbs, M. L.; Baer, M. R. Calibrating the BKW-EOS with a Large Product Species Data Base and Measured CJ Properties. 10th Symp.(Int.) Detonation, Boston, United States, Office of Naval Research, 1993, 409-418.
  • [8] Mader, C. L. Numerical Modeling of Explosives and Propellants. 3rd ed., Taylor and Francis, Boca Raton 2008; ISBN 978-1-4200-5238-1.
  • [9] Keshavarz, M. H.; Kamalvand, M.; Jafari, M.; Zamani, A. An Improved Simple Method for the Calculation of the Detonation Performance of CHNOFCl, Aluminized and Ammonium Nitrate Explosives. Cent. Eur. J. Energ. Mater. 2016, 13(2): 381-396.
  • [10] Zhang, Q.; Chang, Y. Prediction of Detonation Pressure and Velocity of Explosives with Micrometer Aluminum Powders. Cent. Eur. J. Energ. Mater. 2012, 9(1): 77-86.
  • [11] Keshavarz, M. H.; Zamani, A.; Shafiee, M. Predicting Detonation Performance of CHNOFCl and Aluminized Explosives. Propellants Explos. Pyrotech. 2014, 39(5): 749-754.
  • [12] Keshavarz, M. H.; Zamani, A. A Simple and Reliable Method for Predicting the Detonation Velocity of CHNOFCl and Aluminized Explosives. Cent. Eur. J. Energ. Mater. 2015, 12(1): 13-33.
  • [13] Klapötke, T. M. Chemistry of High Energy Materials. 3rd ed., Walter de Gruyter GmbH, Berlin 2015; ISBN 978-3-11-043932-8.
  • [14] Dearden, J. C.; Rotureau, P.; Fayet, G. QSPR Prediction of Physico-chemical Properties for REACH. SAR QSAR Environ. Res. 2013, 24(4): 279-318.
  • [15] Jafari, M.; Keshavarz, M. H. Simple Approach for Predicting the Heats of Formation of High Nitrogen Content Materials. Fluid Phase Equilib. 2016, 415:166-175.
  • [16] Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D.; Karelson, M.; Kahn, I.; Dobchev, D. A. Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction. Chem. Rev. 2010, 110(10): 5714-5789.
  • [17] Palm, III W. J. Introduction to MATLAB for Engineers. 3rd ed., McGraw-Hill, New York 2011; ISBN 978-0-07-353487-9.
  • [18] Billo, E. J. Excel for Chemists: A Comprehensive Guide. 2nd ed., Wiley, New York 2001; ISBN 0-471-39462-9.
  • [19] Keshavarz, M. H.; Jafari, M.; Kamalvand, M.; Karami, A.; Keshavarz, Z.; Zamani, A.; Rajaee, S. A Simple and Reliable Method for Prediction of Flash Point of Alcohols Based on Their Elemental Composition and Structural Parameters. Process Saf. Environ. Prot. 2016, 102: 1-8.
  • [20] Makridakis, S.; Hibon, M. Evaluating Accuracy (or Error) Measures. INSEAD, Fontainebleau, France 1995.
  • [21] Kamalvand, M.; Keshavarz, M. H.; Jafari, M. Prediction of the Strength of Energetic Materials Using the Condensed and Gas Phase Heats of Formation. Propellants Explos. Pyrotech. 2015, 40(4): 551-557.
  • [22] Montgomery, D. C.; Runger, G. C. Applied Statistics and Probability for Engineers. 6th ed., Wiley, 2014; ISBN 978-1-118-64506-2.
  • [23] Dehmer, M.; Varmuza, K.; Bonchev, D.; Emmert-Streib, F. Statistical Modelling of Molecular Descriptors in QSAR/QSPR. Wiley, 2012; ISBN 978-3-527-64502-2.
  • [24] Hawkins, D. M.; Basak, S. C.; Mills, D. Assessing Model fit by Cross-validation. J. Chem. Inf. Comput. Sci. 2003, 43(2): 579-586.
  • [25] Gramatica, P. Principles of QSAR Models Validation: Internal and External. QSAR Comb. Sci. 2007, 26(5): 694-701.
  • [26] MacLennan, J.; Tang, Z. H.; Crivat, B. Data Mining with Microsoft SQL Server 2008. Wiley Publishing, Inc., Indiana, USA 2009; ISBN 978-0-470-27774-4.
  • [27] Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20(4):269-276.
  • [28] Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inf. 2010, 29: 476-488.
  • [29] Leach, A. R.; Gillet, V. J. An Introduction to Chemoinformatics. Springer, The Netherlands 2007; ISBN 978-1-4020-6291-9.
  • [30] Fayet, G.; Rotureau, P. Development of Simple QSPR Models for the Impact Sensitivity of Nitramines. J. Loss Prevent. Process. Indust. 2014, 30: 1-8.
  • [31] McGee, B. C.; Hobbs, M. L.; Baer, M. R. Exponential 6 Parameterization for the JCZ3-EOS. Sandia National Laboratories, Albuquerque, New Mexico 1998.
  • [32] Engineering Design Handbook, Principles of Explosive Behavior (AMCP 706-180). US Army Material Command, 1972.
  • [33] Cooper, P. W. Explosives Engineering. Wiley VCH, New York 1996; ISBN 0-471-18636-8.
  • [34] Lu, J. P. Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives Performance. DSTO-TR-1199, Aeronautical and Maritime Research Laboratory, Australia 2001.
  • [35] Dobratz, B. M.; Crawford, P. C. LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Simulants. Lawrence Livermore National Laboratory, Livermore, CA 1985.
  • [36] Suceska, M. Test Methods for Explosives. Springer, New York 1995; ISBN 978-1-4612-0797-9.
  • [37] Kirk, R. E.; Othmer, D. F.; Grayson, M.; Eckroth, D. Kirk-Othmer Encyclopedia of Chemical Technology. Vol 15, Lasers-Mass Spectrometry. 4th ed., Wiley, New York, USA 2004; ISBN 978-0-471-02037-0.
  • [38] Agrawal, J. P. Recent Trends in High-energy Materials. Prog. Energy Combust. Sci. 1998, 24(1): 1-30.
  • [39] Kirk, R. E., Othmer, D. F., Grayson, M.; Eckroth, D. Kirk-Othmer Encyclopedia of Chemical Technology. Vol 10, Explosives and Propellants-Flame Retardants for Textiles. 4th ed. Wiley, New York, USA 2004, ISBN 978-0-471-02037-0.
  • [40] Vadhe, P. P.; Pawar, R. B.; Sinha, R. K.; Asthana, S. N.; Rao, A. S. Cast Aluminized Explosives (Review). Combust. Explos. Shock+, 2008, 44(4): 461-477.
  • [41] Agrawal, J. P. Some New High Energy Materials and their Formulations for Specialized Applications. Propellants Explos. Pyrotech. 2005, 30(5): 316-328.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a0e2481-0ec0-4ab1-8434-d28f9168659a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.