PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the mechanical properties of electromagnetic self-piercing riveted (E-SPR) joints with carbon fiber reinforced plastics (CFRP)/aluminum alloy (Al) 5052 were comprehensively investigated. Microtopography observations, hardness measurements and tensile-shear strength tests were performed by comparing with regular pressure self-piercing riveted (P-SPR) joints. Results showed that the undercut value of E-SPR joints was higher than that of P-SPR joints. The hardness values on rivet legs of E-SPR joints were larger and almost no difference on rivet heads between the E-SPR and P-SPR. In addition, it was found that mechanical properties of E-SPR joints were higher than that of P-SPR joints. The shear fracture appearance indicated that E-SPR joints with higher undercut were more difficult to rupture in the bottom of Al sheet.
Rocznik
Strony
240--250
Opis fizyczny
Bibliogr. 36 poz., fot., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
  • Chongqing Changan Automobile Co. Ltd, Chongqing 401120, China
autor
  • Chongqing Changan Automobile Co. Ltd, Chongqing 401120, China
autor
  • College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
Bibliografia
  • [1] H. Rao, J. Kang, G. Huff, K. Avery, Impact of specimen configuration on fatigue properties of self-piercing riveted aluminum to carbon fiber reinforced polymer composite, Int. J. Fatigue 113 (2018) 11–22.
  • [2] F. Hirsch, S. Müller, M. Machens, R. Staschko, N. Fuchs, M. Kästner, Simulation of self-piercing riveting processes in fibre reinforced polymers: material modelling and parameter identification, J. Mater. Process. Technol. 241 (2017) 164–177.
  • [3] E. Eusebi, Composite intensive vehicles: past, present and future, in: Structure Materials Challenges Next Generation Vehicle, US Department Commercial, Washington, DC, 1995.
  • [4] N.A. Gjostein, Technology Needs Beyond PNGV, Basic Needs Vehicle Future New Orleans, Louisiana (5 January 1995), 1995.
  • [5] X. He, I. Pearson, K. Young, Self-pierce riveting for sheet materials: state of the art, J. Mater. Process. Technol. 199 (2008) 27–36.
  • [6] L. Huang, J. Moraes, D. Sediako, J. Jordan, H. Guo, X. Su, Finiteelement and residual stress analysis of self-pierce riveting In dissimilar metal sheets, J. Manuf. Sci. Eng. 139 (2017), 021007-1–021007-11.
  • [7] A. Pramanik, A. Basak, Y. Dong, P. Sarker, M. Uddin, G. Littlefair, A. Dixit, S. Chattopadhyaya, Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – a review, Composite A 101 (2017) 1–29.
  • [8] M. Fu, P. Mallick, Fatigue of self-piercing riveted joints in aluminum alloy 6111, Int. J. Fatigue 25 (2003) 183–189.
  • [9] Y. Miyashita, Y. Teow, T. Karasawa, N. Aoyagi, Y. Otsuka, Y. Mutoh, Strength of adhesive aided SPR joint for AM50 magnesium alloy sheets, Proc. Eng. 10 (2011) 2532–2540.
  • [10] Y. Abe, T. Kato, K. Mori, Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die, J. Mater. Process. Technol. 209 (2009) 3914–3920.
  • [11] D. Li, A. Chrysanthou, I. Patel, G. Williams, Self-piercing riveting – a review, Int. J. Adv. Manuf. Technol. 92 (2017) 1777–1780.
  • [12] J. Kang, H. Rao, R. Zhang, K. Avery, X. Su, Tensile and fatigue behavior of self-piercing rivets of CFRP to aluminium for automotive application, IOP Conf. Ser. Mater. Sci. Eng. 137 (2016) 12–25.
  • [13] X. He, Y. Wang, Y. Lu, K. Zeng, F. Gu, A. Ball, Self-piercing riveting of similar and dissimilar titanium sheet materials, Int. J. Adv. Manuf. Technol. 80 (2015) 2105–2110.
  • [14] Z. Xie, W. Yan, C. Yu, T. Mu, L. Song, Tensile capacity of selfpiercing rivet connections in thin-walled steel structures, J. Construct. Steel Res. 144 (2018) 211–220.
  • [15] R. Cacko, Review of different material separation criteria In numerical modeling of the self-piercing riveting process-SPR, Arch. Civil Mech. Eng. 8 (2008) 21–30.
  • [16] W. Presz, R. Cacko, Analysis of the influence of a rivet field stress distribution on the micro-SPR joint-initial approach, Arch. Civil Mech. Eng. 10 (2010) 69–75.
  • [17] W. Yan, Z. Xie, C. Yu, L. Song, H. He, Experimental investigation and design method for the shear strength of self-piercing rivet connections in thin-walled steel structures, J. Construct. Steel Res. 133 (2017) 231–240.
  • [18] G.D. Franco, L. Fratini, A. Pasta, Influence of the distance between rivets in self-piercing riveting bonded joints made of carbon fiber panels and AA2024 blanks, Mater. Des. 35 (2012) 342–349.
  • [19] J. Mucha, The numerical analysis of the effect of the joining process parameters on self-piercing riveting using the solid rivet, Arch. Civil Mech. Eng. 14 (2014) 444–454.
  • [20] C. Zhang, R. Gou, M. Yu, Y. Zhang, Y. Qiao, S. Fang, Mechanical and fatigue properties of self-piercing riveted joints in high-strength steel and aluminium alloy, J. Iron Steel Res. Int. 24 (2017) 214–221.
  • [21] X. He, L. Zhao, C. Deng, B. Xing, F. Gu, A. Ball, Self-piercing riveting of similar and dissimilar metal sheets of aluminum alloy and copper alloy, Mater. Des. 65 (2015) 923–933.
  • [22] R. Haque, Y. Durandet, Strength prediction of self-pierce riveted joint in cross-tension and lap-shear, Mater. Des. 108 (2016) 666–678.
  • [23] O. Hahn, R. Neugebauer, G. Leuschen, C. Kraus, R. Mauermann, Research in impulse joining of self pierce riveting, in: 3rd International Conference on High Speed Forming – 2008, Dortmund, Germany, 2008.
  • [24] B. Wang, C. Hao, J. Zhang, H. Zhang, A new self-piercing riveting process and strength evaluation, J. Manuf. Sci. Eng. 128 (2006) 580–587.
  • [25] D. Li, L. Han, A. Chrysanthou, M. Shergold, G. Williams, The effect of setting velocity on the static and fatigue strengths of self-piercing riveted joints for automotive applications, in: TMS Annual Conference, 2014.
  • [26] F. Li, J. Mo, J. Li, L. Huang, H. Zhou, Formability of Ti–6Al–4V titanium alloy sheet in magnetic pulse bulging, Mater. Des. 52 (2013) 337–344.
  • [27] X. Cui, J. Li, J. Mo, J. Fang, Y. Zhu, K. Zhong, Investigation of large sheet deformation process in electromagnetic incremental forming, Mater. Des. 76 (2015) 86–96.
  • [28] X. Zhang, H. Yu, C. Li, Microstructure investigation and mechanical property analysis in electromagnetic riveting, Int. J. Adv. Manuf. Technol. 78 (2015) 613–623.
  • [29] V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner, Electromagnetic forming – a review, J. Mater. Process. Technol. 211 (2011) 787–829.
  • [30] E.A. Repetto, R. Radovitzky, M. Ortiz, R.C. Lundquist, D.R. Sandstrom, A finite element study of electromagnetic riveting, J. Manuf. Sci. Eng. 121 (1999) 61–68.
  • [31] J. Cui, L. Qi, H. Jiang, G. Li, X. Zhang, Numerical and experimental investigations in electromagnetic riveting with different rivet dies, Int. J. Mater. Form. (2017) 1–15.
  • [32] B.W. Huffer, HH54 rugged and reliable handheld EMR, in: Aerospace Technology Conference and Exposition, 2009.
  • [33] L. Zhao, X. He, B. Xing, Y. Lu, F. Gu, A. Ball, Influence of sheet thickness on fatigue behavior and fretting of self-piercing riveted joints in aluminum alloy 5052, Mater. Des. 87 (2015) 1010–1017.
  • [34] H. Jiang, G. Li, X. Zhang, J. Cui, Fatigue and failure mechanizm in carbon fiber reinforced plastics/aluminum alloy single lap joint produced by electromagnetic riveting technique, Compos. Sci. Technol. 152 (2017) 1–10.
  • [35] R. Haque, Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: a review, Arch. Civil Mech. Eng. 18 (2018) 83–93.
  • [36] H. Jiang, T. Luo, G. Li, X. Zhang, J. Cui, Fatigue life assessment of electromagnetic riveted carbon fiber reinforce plastic/aluminum alloy lap joints using Weibull distribution, Int. J. Fatigue 105 (2017) 180–189.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a077510-0c18-4463-95d8-6d3e97c2c791
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.