Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Under suitable assumptions the eigenvalues for an unbounded discrete operator A in l2 , given by an infinite complex band-type matrix, are approximated by the eigenvalues of its orthogonal truncations. Let [formula] where [formula] is the set of all limit points of the sequence (λn) and An is a finite dimensional orthogonal truncation of A. The aim of this article is to provide the conditions that are sufficient for the relations σ (A) ⊂ Λ (A) or Λ(A) ) ⊂ σ (A) to be satisfied for the band operator A.
Czasopismo
Rocznik
Tom
Strony
861--879
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] W. Arveson, C*-algebras and numerical linear algebra, J. Funct. Anal. 122 (1994), no. 2, 333-360.
- [2] A.G. Baskakov, G.V. Garkavenko, M.Yu Glazkova, N.B. Uskova, On spectral properties of one class difference operators, J. Phys.: Conf. Ser. 1479 012002 (2020).
- [3] B. Beckermann, Complex Jacobi matrices, J. Comput. Appl. Math. 127 (2001), 17-65.
- [4] Yu.M. Berezansky, L.Ya. Ivasiuk, O.A. Mokhonko, Recursion relation for orthogonal polynomials on the complex plane, Methods Funct. Anal. Topology 14 (2008), no. 2, 108-116.
- [5] A. Boutet de Monvel, S. Naboko, L. Silva, The asymptotic behaviour of eigenvalues of modified Jaynes-Cummings model, Asymptot. Anal. 47 (2006), no. 3-4, 291-315.
- [6] A. Boutet de Monvel, L. Zielinski, Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices, Cent. Eur. J. Math. 12 (2014), no. 3, 445-463.
- [7] A. Boutet de Monvel, J. Janas, L. Zielinski, Asymptotics of large eigenvalues for a class of band matrices, Rev. Math. Phys. 25 (2013), no. 8, 1350013.
- [8] I.N. Braeutigam, D.M. Polyakov, Asymptotics of eigenvalues of infinite block matrices, Ufa Math. J. 11 (2019), no. 3, 11-28.
- [9] P.A. Cojuhari, On the spectrum of a class of block Jacobi matrices, operator theory, structured matrices, and dilations, Theta Ser. Adv. Math., Bucharest (2007), 137-152.
- [10] P.A. Cojuhari, M.A. Nowak, Projection-iterative methods for a class of difference equa¬tions, Integr. Equ. Oper. Theory 64 (2009), 155-175.
- [11] H. Dette, B. Reuther, W.J. Studden, M. Zygmunt, Matrix measures and random walks with a block tridiagonal transition matrix, SIAM J. Matrix Anal. Appl. 29 (2006), no. 1, 117-142.
- [12] P. Djakov, B. Mityagin, Simple and double eigenvalues of the Hill operator with a two-term potential, J. Approx. Theory 135 (2005), 70-104.
- [13] P. Djakov, B. Mityagin, Trace formula and spectral Riemann surface for a class of tri-diagonal matrices, J. Approx. Theory 139 (2006), 293-326.
- [14] E.K. Ifantis, P.N. Panagopoulos, Limit points of eigenvalues of truncated tridiagonal operators, J. Comput. Appl. Math. 133 (2001), 413-422.
- [15] E.K. Ifantis, P.D. Siafarikas, An alternative proof of a theorem of Stieltjes and related results, J. Comput. Appl. Math. 65 (1995), 165-172.
- [16] E.K. Ifantis, C.P. Kokologiannaki, P.N. Panagopoulos, Limit points of eigenvalues of truncated unbounded tridiagonal operators, Centr. Eur. J. Math. 5 (2007), no. 2, 335-344.
- [17] Y. Ikebe, N. Asai, Y. Miyazaki, D. Cai, The eigenvalue problem for infinite complex symmetric tridiagonal matrices with application, Linear Algebra Appl. 241/243 (1996), 599-618.
- [18] J. Janas, S. Naboko, Spectral properties of self-adjoint Jacobi matrices coming from a birth and death process, Oper. Theory Adv. Appl. 127 (2001), 387-397.
- [19] M.A. Krasnosel’skij, G.M. Vainikko, P.P. Zabreiko, Y.B. Rutitskij, V.Y. Stetsenko, Approximate Solution of Operator Equations, Wolters-Noordhoff, 1972.
- [20] M. Lindner, Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method, Birkhäuser, Basel, 2006.
- [21] M. Malejki, Approximation and asymptotics of eigenvalues of unbounded self-adjoint Jacobi matrices acting in l2 by the use of finite submatrices, Cent. Eur. J. Math. 8 (2010), no. 1, 114-128.
- [22] M. Malejki, Asymptotic behaviour and approximation of eigenvalues for unbounded block Jacobi matrices, Opuscula Math. 30 (2010), no. 3, 311-330.
- [23] M. Malejki, Eigenvalues for some complex infinite tridiagonal matrices, JAMCS 26 (2018), no. 5, 1-9.
- [24] M. Marletta, S. Naboko, The finite section method for dissipative operators, Mathematika 60 (2014), no. 2, 415-443.
- [25] E.V. Petropoulou, L. Velazquez, Self-adjointes of unbounded tridiagonal operators and spectra of their finite truncations, J. Math. Anal. Appl. 420 (2014), 852-872.
- [26] V.S. Rabinovich, S. Roch, B. Silbermann, On finite sections of band-dominated operators, Oper. Theory Adv. Appl. 181 (2008), 385-391.
- [27] P.N. Shivakumar, J.J. Wiliams, N. Rudraiah, Eigenvalues for infinite matrices, Linear Algebra Appl. 96 (1987), 35-63.
- [28] H. Volkmer, Error estimates for Rayleigh-Ritz approximation of eigenvalues and eigen¬functions of the Mathieu and spheroidal wave equation, Constr. Approx. 20 (2004), 39-54.
- [29] H. Volkmer, Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials, J. Comput. Appl. Math. 213 (2008), 488-500.
- [30] C.H. Ziener, M. Rückl, T. Kampf, W.R. Bauer, H.P. Schlemmer, Mathieu functions for purely imaginary parameters, J. Comput. Appl. Math. 236 (2012), 4513-4524.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a069eb6-2585-4963-83af-b2d2ab5303bd