PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transformations of mercury in processes of solid fuel combustion : review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przemiany rtęci w procesach spalania paliw stałych
Języki publikacji
EN
Abstrakty
EN
The paper presents current reports on kinetics and mechanisms of reactions with mercury which take place in the exhaust gases, discharged from the processes of combustion of solid fuels (coals). The three main stages were considered. The first one, when thermal decomposition of Hg components takes place together with formation of elemental mercury (Hg0). The second one with homogeneous oxidation of Hg0 to Hg2+ by other active components of exhaust gases (e.g. HCl). The third one with heterogeneous reactions of gaseous mercury (the both - elemental and oxidised Hg) and solid particles of fly ash, leading to generation of particulate-bound mercury (Hgp). Influence of exhaust components and their concentrations, temperature and retention time on the efficiency of mercury oxidation was determined. The issues concerning physical (gas-solid) and chemical speciation of mercury (fractionation Hg0-Hg2+) as well as factors which have influence on the mercury speciation in exhaust gases are discussed in detail.
PL
Artykuł stanowi podsumowanie aktualnego stanu wiedzy nt. kinetyki i mechanizmów reakcji z udziałem rtęci, w tym reakcji homogenicznych i heterogenicznych, zachodzących w spalinach z procesów spalania paliw stałych. Opisano wpływ składników spalin i temperatury na efektywność utleniania rtęci. Omówiono również zagadnienia fizycznej i chemicznej specjacji rtęci w gazach spalinowych, jak również wpływ różnych czynników na specjację rtęci.
Rocznik
Strony
82--93
Opis fizyczny
Bibliogr. 122 poz., tab.
Twórcy
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences in Zabrze, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences in Zabrze, Poland
Bibliografia
  • [1]. Abad-Valle, J.P., Lopez-Anton, M.A., Diaz-Somoano, M., Juan, R., Rubio, B., Garcia, J.R., Khainakov, S.A. & Martínez-Tarazona, M.R. (2011). Influence of iron species present in fly ashes on mercury retention and oxidation, Fuel, 90, pp. 2808-2811.
  • [2]. Abad-Valle, J.P., López-Antón, M.A., Díaz-Somoano, M. & Martínez-Tarazona, M.R. (2011). The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury, Chemical Engineering Journal, 174, pp. 86-92.
  • [3]. Agarwal, H. & Stenger, H.G. (2007). Development of a predictive kinetic model for homogeneous Hg oxidation data, Mathematical and Computer Modelling, 45 (1-2), pp. 109-125.
  • [4]. Ariya, P.A., Khalizov, A. & Gidas, A.J. (2002). Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications, The Journal of Physical Chemistry A, 106, pp. 7310-7320.
  • [5]. Baochun, W., Thomas, P., Shadman, W., Farhang, A., Senior, C.L. & Morency, J.R. (2000). Interactions between vapor-phase mercury compounds and coal char in synthetic flue gas, Fuel Processing Technology, 63, pp. 93-107.
  • [6]. Bełdowska, M., Saniewska, D., Falkowska, L. & Lewandowska, A. (2012). Mercury in particulate matter over Polish zone of the southern Baltic Sea, Atmospheric Environment, 46, pp. 397-404.
  • [7]. Bhardwaj, R., Chen, X. & Vidic, R.D. (2009). Impact of fly ash composition on mercury speciation in simulated flue gas, Journal of the Air & Waste Management Association, 59(11), pp. 1331-1338.
  • [8]. Bojakowska, I. & Sokołowska, G. (2001). Mercury in mineral raw materials exploited in Poland as potential sources of environmental pollution, Biuletyn PIG 394, pp. 5-54. (in Polish)
  • [9]. Cao, Y., Chin-Min Cheng, C-M., Chen, C-W., Liu, M., Wang, C. & Pan, W-P. (2008). Abatement of mercury emissions in the coal combustion process equipped with a Fabric Filter Baghouse, Fuel, 87, pp. 3322-3330.
  • [10]. Cauch, B., Silcox, G.D., Lighty, J.S., Wendt, J.O.L., Fry, A. & Senior, C.L. (2008), Environmental Science & Technology, 42, pp. 2594-2599.
  • [11]. Chow, W., Mill, M.J. & Torrens, I.M. (1994). Pathways of trace elements in power plants: interim research results and implications, Fuel Processing Technology, 39, pp. 5-20.
  • [12]. Council of Ministers of the Environment (2006). Canada-wide Standards for Mercury Emissions from Coal-fired Electric Power Generation Plants. (http://www.ccme.ca/files/Resources/air/mercury/hg_epg_cws_w_annex.pdf(11.10.2016)).
  • [13]. Dajnak, D., Clark, K.D., Lockwood, F.C. & Reed, G. (2003). The prediction of mercury retention in ash from pulverised combustion of coal and sewage sludge, Fuel, 82, pp. 1901-1909.
  • [14]. Dunham, G.E., De Wall, R.A. & Senior, C.L. (2003). Fixed-bed studies of the interactions between mercury and coal combustion fly ash, Fuel Processing Technology, 82, pp. 197-213.
  • [15]. Edwards, J.R., Srivastava, R.K. & Kilgroe, J.A. (2001). Study of gas-phase mercury speciation using detailed chemical kinetics, Journal of the Air & Waste Management Association, 51, pp. 869-877.
  • [16]. Eom, Y., Jeon, S.H., Ngo, T.A., Kim, J. & Lee, T.G. (2008). Heterogeneous mercury reaction on a Selective Catalytic Reduction (SCR) Catalyst, Catalysis Letters, 121, pp. 219-225.
  • [17]. Finkelman, R.B. (1994). Mode of occurrence of potentially hazardous elements in coal: levels of confidence, Fuel Processing Technology, 39, pp. 21-34.
  • [18]. Frandsen, F., Dam-Johansen, K. & Rasmussen, P. (1994). Trace elements from combustion and gasification of coal an equilibrium approach, Progress in Energy and Combustion Science, pp. 115-138.
  • [19]. Fuente-Cuesta, A., Lopez-Anton, M.A., Diaz-Somoano, M. & Martínez-Tarazona, M.R. (2012). Retention of mercury by low-cost sorbents: Influence of flue gas composition and fly ash occurrence, Chemical Engineering Journal, 213, pp. 16-21.
  • [20]. Fujiwara, N., Fujita, Y., Nomura, K., Moritomi, H., Tuzi, T. & Takasu, S. (2002). Mercury transformations in the exhausts from lab- -scale coal flames, Fuel, 81, pp. 2045-2052.
  • [21]. Galbreath, K.C. & Zygarlicke, C.J. (1996). Mercury speciation in coal combustion and gasification flue gases, Environmental Science & Technology, 30, pp. 2421-2426.
  • [22]. Galbreath, K.C. & Zygarlicke, C.J. (2000). Mercury transformations in coal combustion flue gas, Fuel Processing & Technology, 66, pp. 289-310.
  • [23]. Galbreath, K., Zygarlicke, C.J., Tibbetts, J.E., Schulz, R.L. & Dunham, G.E. (2004). Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system, Fuel Processing Technology, 86(4), pp. 429-448.
  • [24]. Gao, Y., Zhang, Z., Wu, J., Duan, L., Umar, A., Sun, L., Guo, Z. & Wang, Q. (2013). A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases, Environmental Science Technology, 47, pp. 10813-10823.
  • [25]. Ghorishi, S.B. (1998). Fundamentals of Mercury Speciation and Control in Coal-Fired Boilers. EPA Report number EPA- -600/R-98-014 (NTIS PB98-127095), February 1998.
  • [26]. Ghorishi, B. & Gullett, B.K. (1998). Sorption of mercury species by activated carbons and calcium-based sorbents: effect of temperature, mercury concentration, and acid gases, Waste Management & Research, 16, pp. 582-593.
  • [27]. Gibb, W.H., Clarke, F. & Mehta, A.K. (2000). The fate of coal mercury during combustion, Fuel Processing Technology, 65, pp. 365-377.
  • [28]. Hall, B., Schager, P. & Lindqvist, E. (1991). Chemical reactions of mercury in combustion flue gases, Water Air & Soil Pollution, 56, pp. 3-14.
  • [29]. Hlawiczka, S. & Fudala, J. (2008). Assessment of atmospheric mercury emission reduction measures relevant for application in Poland, Environmental Engineering Science, 2, pp. 163-171.
  • [30]. Hlawiczka, S., Kubica, K. & Zielonka, U. (2003). Partitioning factor of mercury during coal combustion in low capacity domestic heating units, Science of the Total Environment, 312, pp. 261-265.
  • [31]. Horne, D.G., Gosavi, R. & Strauss, O.P. (1968). Reactions of metal atoms. I. The combination of mercury and chlorine atoms and the dimerization of mercuries chloride, Journal of Chemical Physics, 48 (10), pp. 4758-4764.
  • [32]. Hower, J.C., Maroto-Valer, M.M., Taulbee, D.N. & Sakulpitakphon, T. (2000). Mercury capture by distinct fly ash carbon forms, Energy & Fuels, 14, pp. 224-226.
  • [33]. Hower, J.C., Senior, C.L., Suuberg, E.M., Hurt, R.H., Wilcox, J.L. & Olson, E.S. (2010). Mercury capture by native fly ash carbons in coal-fired power plants, Progress in Energy and Combustion Science, pp. 510-529.
  • [34]. Ito, S., Yokoyama, T. & Asakura, K. (2006). Emissions of mercury and other trace elements from coal-fired power plants in Japan, Science of the Total Environment, 368, pp. 397-402.
  • [35]. Jang, H.N., Kimb, J.H., Jung, S.J., Back, S.K., Sung, J.H., Kim, S.H., Seo, Y.C., Keel, S.I. & Liu, X. (2014). Mercury emission characteristics from coal combustion by supplying oxygen and carbon dioxide with limestone injection, Fuel Processing Technology, 125, pp. 217-222.
  • [36]. Jones, C. (1994). Consensus on air toxics eludes industry to date, Power, 138, pp. 51-59.
  • [37]. Józewicz, W. (2007). Control of Mercury Emissions from Coal-fired Power Plants. Monography. PZITS Oddział Wielkopolski. Poznań 2007.
  • [38]. Kabata-Pendias, A. & Pendias, H. (1999). Biogeochemistry of trace elements. PWN Warszawa 1999. (in Polish)
  • [39]. Pan, W-P., Cao, Y. & Zhang, K. (2013). Mercury Emission, Control and Measurement from Coal Combustion, pp. 29-36, In: Cleaner Combustion and Sustainable World, Qi, H. & Zhao, B. (Eds.) Springer-Verlag Berlin Heidelberg & Tsinghua University Press, 2013.
  • [40]. Kilgroe, J.D., Sedman, C.B., Srivastava, R.K., Ryan, J.V., Lee, C.W. & Thorneloe, S.A. (2002). Control of Mercury Emissions from Coal-Fired Electric Utility Boilers: Interim Report Including Errata Data 3-21-02, April 2002, EPA-600/R-01-109.
  • [41]. Kolker, A., Senior, C.L. & Quick, J.C. (2006). Mercury in coal and the impact of coal quality on mercury emissions from combustion systems, Applied Geochemistry, 21, pp. 1821-1836.
  • [42]. Kolker, A., Panov, B.S., Panov, Y.B., Landa, E.R., Conko, K.M., Korchemagin, V.A., Shendrik, T. & Mccord, J.D. (2009). Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk Ukraine, International Journal of Coal Geology, 79, pp. 83-91.
  • [43]. Laudal, D.L., Brown, T.D. & Nott, B.R. (2000). Effects of flue gas constituents on mercury speciation, Fuel Processing Technology, 65-66, pp. 157-165.
  • [44]. Laumb, J.D., Benson, S.A. & Olson, E.A. (2004). X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry, Fuel Processing Technology, 85(6-7), pp. 577-585.
  • [45]. Leaner, J.J., Dąbrowski, J.M., Mason, R.P., Resane, T., Richardson, M., Ginster, M., Gericke, G., Petersen, C.R., Masekoameng, E., Ashton, P.J. & Murray, K. (2009). Mercury Emissions from Point Sources in South Africa, In: Mercury Fate and Transport in the Global Atmosphere, Pirrone, N. & Mason, R. (eds.), Springer.
  • [46]. Lee, C.W., Kilgroe, J.D. & Ghorishi, S.B. Speciation of mercury in the presence of coal and waste combustion fly ashes, Report EPA-68-C-99-201, Triangle Park, NC. Environmental Protection Agency 2000.
  • [47]. Lee, C.W., Srivastava, R.K., Ghorishi, S.B., Karwowski, J., Hastings, T.W. & Hirschi, J.C. (2006). Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in
  • [48]. Illinois and Powder River Basin coal combustion flue gases, Journal of the Air & Waste Management Association, 56, pp. 643-649.
  • [49]. Li, L.C., Deng, P., Tian, A.M., Xu, M.H., Zheng, C.G. & Wong, N.B. (2003). A study on the reaction mechanism and kinetic of mercury oxidation by chlorine species, Journal of Molecular Structure: THEOCHEM, 625, pp. 277-281.
  • [50]. Liu, K., Gao, Y., Kellie, S., Pan, W.P. & Riley, J.T.A. (2001). Study of mercury removal in FBC systems fired with high-chlorine coals, Combustion Science & Technology, 164, pp. 145-162.
  • [51]. López-Antón, M.A., Díaz-Somoano, M. & Martínez-Tarazona, M.R. (2007). Retention of elemental mercury in fly ashes in different atmospheres, Energy & Fuels, 21, pp. 99-103.
  • [52]. López-Antón, M.A., Abad-Valle, P., Díaz-Somoano, M., Suárez-Ruiz, I. & Martínez-Tarzona, M.R. (2009). The influence of carbon particle type in fly ashes on mercury adsorption, Fuel, 88, pp. 1194-1200.
  • [53]. López-Antón, M.A., Yuan, Y., Perry, R. & Maroto-Valer, M.M. (2010). Analysis of mercury species present during coal combustion by thermal desorption, Fuel, 89, pp. 629-634.
  • [54]. Mardon, S.M. & Hower, J.C. (2004). Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant, International Journal of Coal Geology, 59 (3-4), pp. 153-169.
  • [55]. Maroto-Valer, M.M., Zhang, Y., Granite, E.J., Tang, Z. & Pennline, H.W. (2005). Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample, Fuel, 84, pp. 105-108.
  • [56]. Mastalerz, M., Hower, J.C., Drobniak, A., Mardon, S.M. & Lis, G. (2004). From in-situ coal to fly ash: A study of coal mines and power plants from Indiana, International Journal of Coal Geology, 59(3-4), pp. 171-192.
  • [57]. Meij, R., Vredendregt, L.H.J. & Winkel, H., (2002). The fate and behavior of mercury in coal-fired power plants, Journal of the Air & Waste Management Association, 52, pp. 912-917.
  • [58]. Mukherjee, A.B., Zevenhoven, R., Bhattacharya, P., Sajwan, K.S. & Kikuchi, R. (2008). Mercury fl ow via coal and coal utilization by-products: A global perspective, Resources, Conservation and Recycling, 52, pp. 571-591.
  • [59]. Naruse, I., Yoshiie, R., Kameshima, T., Takuwa, T. & Mater, J. (2010). Gaseous mercury oxidation behavior in homogeneous reaction with chlorine compounds, Journal of Material Cycles and Waste Management, 12, pp. 154-160.
  • [60]. Nelson, P.F. (2007). Atmospheric emissions of mercury from Australian point sources, Atmospheric Environment, 41, pp. 1717-1724.
  • [61]. Niksa, S.C. & Fujiwara, N.J. (2005). A predictive mechanism for mercury oxidation selective catalytic reduction catalysts under coal-derived flue gas, Journal of the Air & Waste Management Association, 55, pp. 1866-1875.
  • [62]. Niksa, S.C., Fujiwara, N.J., Fujita, Y., Tomura, K., Moritomi, H., Tuji, T. & Takasu, S. (2002). A mechanism for mercury oxidation in coal-derived exhausts, Journal of the Air & Waste Management Association, 52 (8), pp. 894-901.
  • [63]. Niksa, S.C., Helble, J.J. & Fujiwara, N. (2001). Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems, Environmental Science & Technology, 35 (18), pp. 3701-3706.
  • [64]. Norton, G.A., Yang, H., Brown, R.C., Laudal, D.L., Dunham, G.E. & Erjavec, J. (2003). Heterogeneous oxidation of mercury in simulated post combustion conditions, Fuel, 82, pp. 107-116.
  • [65]. Nowak, B., Grzegorczyk, M., Czaplicka, M. & Zielonka, U. (2013). Comparison of two different analytical procedures for determination of total mercury in wet deposition samples, Environmental Protection Engineering, 39(1), pp. 75-85.
  • [66]. Nowak, B., Korszun-Klak, K. & Zielonka, U. (2014). Long-term measurements of atmospheric mercury species (TGM, TPM) and Hg deposition in the Silesian Region, Poland - concept of the mercury deposition coefficient, Archives of the Environmental Protection, 40(3), pp. 43-60.
  • [67]. Olson, E.S., Crocker, C.R., Benson, S.A., Pavlish, J.H. & Holmes, M.J. (2005). Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases, Journal of the Air & Waste Management Association, 55, pp. 747-754.
  • [68]. Pacyna, E.G., Pacyna, J.M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S. & Panasiuk, D. (2006). Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020, Science of the Total Environment, 370, pp. 147-156.
  • [69]. Pacyna, J.M., Travnikov, O., De Simone, F., Hedgecock, I.M., Sundseth, K., Pacyna, E.G., Steenhuisen, F., Pirrone, N., Munthe, J. & Kindbom, K. (2016). Current and future levels of mercury atmospheric pollution on a global scale, Atmospheric Chemistry and Physics, 16, pp. 12495-12511.
  • [70]. Park, J.Y., Won, J.H. & Lee, T.G. (2006). Mercury analysis of various types of coal using acid extraction and pyrolysis methods, Energy Fuels, 20, pp. 2413-2416.
  • [71]. Park, K.S., Seo, Y.C., Lee, S.J. & Lee, J. (2008). Emission and speciation of mercury from various combustion sources, Powder Technology, 180, pp. 151-156.
  • [72]. Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L. & Benson, S.A. (2003). Status review of mercury control options for coal-fired power plants, Fuel Process Technology, 82, pp. 89-165.
  • [73]. Pirrone, N., Munthe, J.H., Barregård, L., Ehrlich, H.C., Petersen, G., Fernandez, R., Hansen, J.C., Grandjean, P., Horvat, M., Steinnes, E., Ahrens, R., Pacyna, J.M., Borowiak, A., Boffetta, P. & Wichmann-Fiebig, M. (2001). Ambient Air Pollution by Mercury (Hg) - Position Paper, Office for Official Publications of the EC (http://europa.eu.int/comm/environment/air/background.htm#mercury(21.08.2017)).
  • [74]. Praveen, A. (2003). Mercury emissions from coal-fired power plants. The Case for Regulatory Action, Northeast States for Coordinated Air Use Management, Boston (www.nescaum.org/documents/rpt031104mercury.pdf (21.08.2017)).
  • [75]. Procaccini, C., Bozzelli, J.W., Longwell, J.P., Smith, K.A. & Sarofim, A.F. (2000). Presence of chlorine radicals and formation of molecular chlorine in the post-flame region of chlorocarbon combustion, Environmental Science & Technology, 34 (21), pp. 4565-4570.
  • [76]. Pyta, H., Rosik-Dulewska, Cz. & Czaplicka, M. (2009). Speciation of Ambient Mercury in the Upper. Silesia Region, Poland, Water, Air & Soil Pollution, 197(1-4), pp. 233-240.
  • [77]. Rallo, M., Lopez-Anton, M.A., Contreras, M.L. & Maroto-Valer, M.M. (2012). Mercury policy and regulations for coal-fired power plants, Environmental Science and Pollution Research, pp. 1084-1096.
  • [78]. Rizeq, R., Hansell, D. & Seeker, W. (1994). Predictions of metals emissions and partitioning in coal-fired combustion systems, Fuel Processing & Technology, 39, pp. 219-236.
  • [79]. Romanov, A., Sloss, L. & Józewicz, W. (2012). Mercury emissions from the coal-fired energy generation sector of the Russian Federation, Energy & Fuels, 26, pp. 4647-4654.
  • [80]. Rubel, A., Andrews, R., Gonzalez, R., Groppo, J. & Robl, T. (2005). Adsorption of Hg and NOX on coal by-products, Fuel, 84, pp. 911-916.
  • [81]. Rubel, A.M., Hower, J.C., Mardon, S.M., Zimmerer, M.J. & Matthew, J. (2006). Thermal stability of mercury captured by ash, Fuel, 85, pp. 2509-2515.
  • [82]. Ruch, R.R., Gluskoter, H.J. & Shimp, N.F. (1974). Occurrence and distribution of potentially volatile trace elements in coal: a final report. Illinois State Geological Survey 1974, Environment Geology Notes, Catalog No. EG072 (http://library.isgs.illinois.edu/Pubs/pdfs/egs/eg072.pdf(21.08.2017)).
  • [83]. Sakulpitakphon, T., Hower, J.C., Trimble, A.S., Schram, W.H. & Thomas, G.A. (2000). Mercury capture by fly ash: study of the combustion of a high-mercury coal at a utility boiler, Energy Fuels, 14 (3), pp. 727-733.
  • [84]. Senior, C.L. (2006). Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants, Journal of the Air & Waste Management Association, 56, pp. 23-31.
  • [85]. Senior, C.L. & Johnson, S.A. (2005). Impact of carbon-in-ash on mercury removal across particulate control devices in coal-fired power plants, Energy Fuels, 19 (3), pp. 859-863.
  • [86]. Senior, C.L., Sarofim, A.F., Zeng, T., Helble, J.J. & Mamani-Paco, R. (2000). Gasphase transformations of mercury in coal-fired power plants, Fuel Processing Technology, 63(2-3), pp. 197-213.
  • [87]. Sliger, R.N., Kramlich, J.C. & Marinov, N.M. (2000). Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species, Fuel Processing Technology, 65-66, pp. 423-428.
  • [88]. Sloss, L.L. Legislation, standards and methods for mercury emissions control, IEA Clean Coal Centre. CCC/195. London, UK, April 2012.
  • [89]. Strege, J.R., Zygarlicke, C.J., Folkedahl, B.C. & McCollor D.P. (2008). SCR deactivation in a full-scale cofired utility boiler, Fuel, 87, pp. 1341-1347.
  • [90]. Suárez-Ruiz, I., Hower, J.C. & Thomas, G.A. (2007). Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants, Energy & Fuels, 21, pp. 59-70.
  • [91]. Suárez-Ruiz, I. & Parra, J.B. (2007). Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends, Energy & Fuels, 21, pp. 1915-1923.
  • [92]. Tan, Y., Mortazavi, R., Dureau, B. & Douglas, M.A. (2004). An investigation of mercury distribution and speciation during coal combustion, Fuel, 83, 2229-2236.
  • [93]. Tewalt, S.J., Belkin, H.E., SanFilipo, J.R., Merrill, M.D., Palmer, C.A., Warwick, P.D., Karlsen, A.W., Finkelman, R.B. & Park, A.J. (2010). Chemical analyses in the World Coal Quality Inventory, version 1: U.S. Geological Survey Open-File Report 2010-1196, (http://pubs.usgs.gov/of/2010/1196/).
  • [94]. Ticknor, J. L, Hsu-Kim, H. & Deshusses, M.A. (2014). A robust framework to predict mercury speciation in combustion flue gases, Journal of Hazardous Materials, 264, pp. 380-385.
  • [95]. Toole-O’Neil, B., Tewalt, S.J., Finkelman, R.B. & Akers, D.J. (1999). Mercury concentration in coal-unraveling the puzzle, Fuel, 78, pp. 47-54.
  • [96]. United Nations Environment Programme (2010). Toolkit for identification and quantification of mercury releases. Reference Report and Revised Inventory Level 2. Report including Description of Mercury Source Characteristics, Version 1.0.
  • [97]. UNEP Chemicals Branch, Geneva, Switzerland. United Nations Environment Programme (2011). Reducing mercury emissions from coal combustion in the energy sector. UNEP Chemicals Branch, Geneva, Switzerland.
  • [98]. United Nations Environment Programme (2013a). Global mercury assessment 2013: sources, emissions, releases, and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland.
  • [99]. United Nations Environment Programme (2013b). Reducing mercury emissions from coal combustion in the energy sector of the Russian Federation. UNEP Chemicals Branch, Geneva, Switzerland.
  • [100]. United Nations Environment Programme (2016). Guidance on Best Available Techniques and Best Environmental Practices. Coal-fired power plants and coal-fired industrial boilers. UNEP Chemicals Branch, Geneva, Switzerland.
  • [101]. U.S. Environmental Protection Agency (1997). Mercury Study Report to Congress 1997 (https://www.epa.gov/mercury/mercury-studyreport-congress).
  • [102]. U.S. Environmental Protection Agency (2002). Control of Mercury Emissions from Coal-Fired Electric Utility Boilers: Interim Report Including Errata Dated 3-31-02, EPA-600/R-01-109, Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, Office of Research and Development, Research Triangle Park, NC.
  • [103]. U.S. Environmental Protection Agency Grant No. R828168 (2004). Final Report: Fundamentals of Mercury Speciation Kinetics: A Theoretical and Experimental Study. University of Arizona
  • [104]. U.S. Environmental Protection Agency (2011). National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam Generating Units; Proposed Rule. Federal Register, Vol. 76, No. 85.
  • [105]. Wang, J., Wang, T., Mallhi, H., Liu, Y., Ban, H. & Ladwig, K. (2007). The role of ammonia on mercury leaching from coal fly ash, Chemosphere, 69, pp. 1586-1592.
  • [106]. Wang, S.X., Zhang, L., Li, G.H., Wu, Y., Hao, J.M., Pirrone, N., Sprovieri, F. & Ancora, M.P. (2010). Mercury emission and speciation of coal-fired power plants in China, Atmospheric Chemistry and Physics, 10, pp. 1183-1192.
  • [107]. Wichliński, M., Kobyłecki, R. & Bis, Z. (2013). The investigation of mercury contents in polish coal samples, Archives of Environmental Protection, 39(2), pp. 141-150.
  • [108]. Wichliński, M., Kobyłecki, R. & Bis, Z. (2014). The release of mercury from polish coals during thermal treatment of fuels in a fluidized bed reactor, Fuel Processing Technology, 119, pp. 92-97.
  • [109]. Wilcox, J., Rupp, E., Ying, S.C., Lim, D.-H., Negreira, A.S., Kirchofer, A., Feng, F. & Lee, K. (2012). Mercury adsorption and oxidation in coal combustion and gasification processes, International Journal of Coal Geology, 90-91, pp. 4-20.
  • [110]. Widmer, N., Cole, J., Seeker, W. & Gaspar, J. (1998). Practical limitation of mercury speciation in simulated municipal waste incinerator flue gas, Combustion Science and Technology, 134, pp. 315-326.
  • [111]. Winberg, S., Winthum, J., Tseng, S. & Locke, J. (2004). Evaluation of mercury emissions from coal-fired facilities with SCR-FGD Systems, DOE/NETL Mercury Control Technology R&D Program Review, Pittsburgh, PA.
  • [112]. Wojnar, K. & Wisz, J. (2006). Mercury in the Polish energetic, Energetyka, 59 (4), pp. 280-284. (in Polish)
  • [113]. Wu, C., Cao, Y., Dong, Z., Cheng, C., Li, H. & Pan, W. (2010). Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler, Journal of Environmental Sciences (China), 22(2), pp. 277-282.
  • [114]. Xu, M., Qiao, Y., Zheng, C., Li, L. & Liu, J. (2003). Modeling of homogeneous mercury speciation using detailed chemical kinetics, Combustion and Flame-Journal, 132, pp. 208-218.
  • [115]. Yudovich, Y.E. & Ketris, M.P. (2005a). Mercury in coal: a review: part 1, International Journal of Coal Geology, 62, pp. 107-134.
  • [116]. Yudovich, Y.E. & Ketris, M.P. (2005b). Mercury in coal: a review: part 2. Coal use and environmental problems, International Journal of Coal Geology, 62, pp. 135-165.
  • [117]. Zhang, L., Wang, S. X., Meng, Y. & Hao, J.M. (2012). Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China, Environmental Science and Technology, 46 (11), pp. 6385-6392.
  • [118]. Zhao, Y., Mann, M.D., Olson, E.S., Pavlish, J.H. & Dunham, G.E. (2006). Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions, Journal of the Air & Waste Management Association, 56 (5), pp. 628-635.
  • [119]. Zheng, L., Liu, G. & Zhou, C. (2007). The distribution, occurrence and environmental effect of mercury in Chinese coals, Science of the Total Environment, 384, pp. 374-383.
  • [120]. Zhuang, Y., Laumb, J., Liggett, R., Holmes, M. & Pavlish, J.H. (2007a). Impacts of acid gases on mercury oxidation across SCR catalyst, Fuel Processing Technology-Journal, 88, pp. 929-934.
  • [121]. Zhuang, Y., Thompson, J.S., Zygarlicke, C.J. & Pavlish, J.H. (2004). Development of a mercury transformation model in coal combustion flue gas, Environmental Science & Technology, 38 (21), pp. 5803-5808.
  • [122]. Zhuang, Y., Thompson, J.S., Zygarlicke, C.J. & Pavlish, J.H. (2007b). Impact of calcium chloride addition on mercury transformations and control in coal flue gas, Fuel, 86, pp. 2351-2359.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69fd17f0-bbd3-469e-808d-52911af7a824
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.